御嶽山の火山活動解説資料 (令和7年8月)

気象庁地震火山部火山監視・警報センター

地獄谷火口 ¹⁾ の一部の噴気孔では引き続き勢いよく噴気が出ており、地熱域の温度は高い状態が 継続していますが、長期的には温度の低下傾向がみられます。

地震活動は低調に経過しており、傾斜計及び GNSS 連続観測では、火山活動によるとみられる特段の地殻変動は認められません。

地獄谷火口内では、突発的な火山灰等の噴出に注意が必要です。

地元自治体等が行う立入規制に従い、また、登山する際はヘルメットを持参するなどの安全対策 をしてください。

噴火予報(噴火警戒レベル1、活火山であることに留意)の予報事項に変更はありません。

〇 活動概況

・噴煙など表面現象の状況(図1-①、図2、図3、図4-1~4-3)

地獄谷火口の地熱域の温度は、長期的な低下傾向がみられるものの高い状態が継続しています。 今期間、地獄谷火口からの噴煙の高さは600m以下で経過しました。

20日に実施した現地調査では、一ノ池及び二ノ池で噴気や地熱域は認められませんでした。また、地獄谷火口の一部の噴気孔で引き続き活発な噴気活動と地熱域が認められました。

・地震や微動の発生状況(図1-23、図5、図8)

今期間、剣ヶ峰山頂直下の火山性地震は、少ない状態で経過しました。 火山性微動は観測されていません。

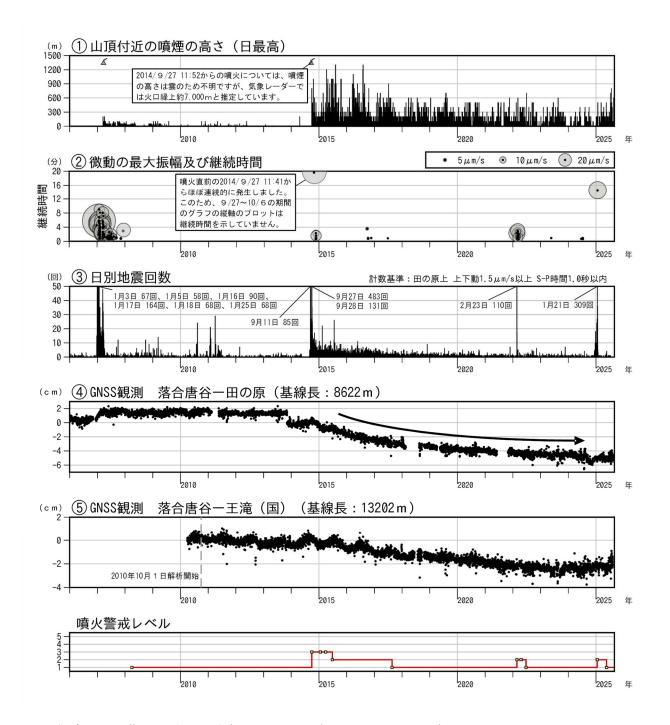
・地殻変動の状況 (図1-45、図6~8)

今期間、傾斜計及び GNSS 連続観測では、火山活動によるとみられる特段の変化は認められません。

1) 地獄谷火口とは、剣ヶ峰南西側斜面の想定火口域を示します。

この火山活動解説資料は気象庁ホームページでも閲覧することができます。

https://www.data.jma.go.jp/vois/data/report/monthly_v-act_doc/monthly_vact.php


次回の火山活動解説資料(令和7年9月分)は令和7年10月8日に発表する予定です。

本資料で用いる用語の解説については、「気象庁が噴火警報等で用いる用語集」を御覧ください。

https://www.jma.go.jp/jma/kishou/know/kazan/kazanyougo/mokuji.html

この資料は気象庁のほか、中部地方整備局、国土地理院、東京大学、京都大学、名古屋大学、国立研究開発法人防災科学技術研究所、国立研究開発法人産業技術総合研究所、長野県及び岐阜県のデータも利用して作成しています。

資料中の地図の作成に当たっては、国土地理院発行の『電子地形図 (タイル)』『数値地図 25000 (行政界・海岸線)』『数値地図 50mメッシュ (標高)』『基盤地図情報 (数値標高モデル)』及び国土交通省発行の『国土数値情報』を使用しています。

図1 御嶽山 長期間の火山活動経過図(2006年1月1日~2025年8月31日)

- ①灰色の三角シンボルは噴火発生を示します。2014年9月27日11時52分からの噴火については、噴煙の高さは雲のため不明ですが、気象レーダーでは火口縁上約7,000mと推定しています。
- ②の振幅は田の原上観測点の速度上下動成分です(火山性微動の発生した 2015 年 7 月 20 日、2016 年 5 月 19 日は欠測です)。
- ④~⑤は GNSS 連続観測による基線長変化です。 (国): 国土地理院
- 2010年10月及び2016年1月に、解析方法を変更しています。空白部分は欠測を示します。
- ④ではシステム更新に伴う調整中のため、一部の過去データにステップ状の変化がみられています。
- 図中4)~⑤に示す基線は、図7の GNSS 基線4)~⑤のそれぞれに対応します。
- ・今期間、地獄谷火口からの噴煙の高さは 600m以下で経過しました。噴煙活動は長期的には緩やかな低下傾向となっています。
- ・長期的には GNSS 連続観測の一部の基線で、2014 年 10 月頃以降、山体の収縮によると考えられる縮みの傾向が続き(例えば④矢印)、2024 年頃から停滞しています。

図2 御嶽山 山頂部の噴煙の状況

上段:三岳黒沢監視カメラ 下段:中部地方整備局の滝越監視カメラ

・今期間、地獄谷火口からの噴煙の高さは 600m以下で経過しました。

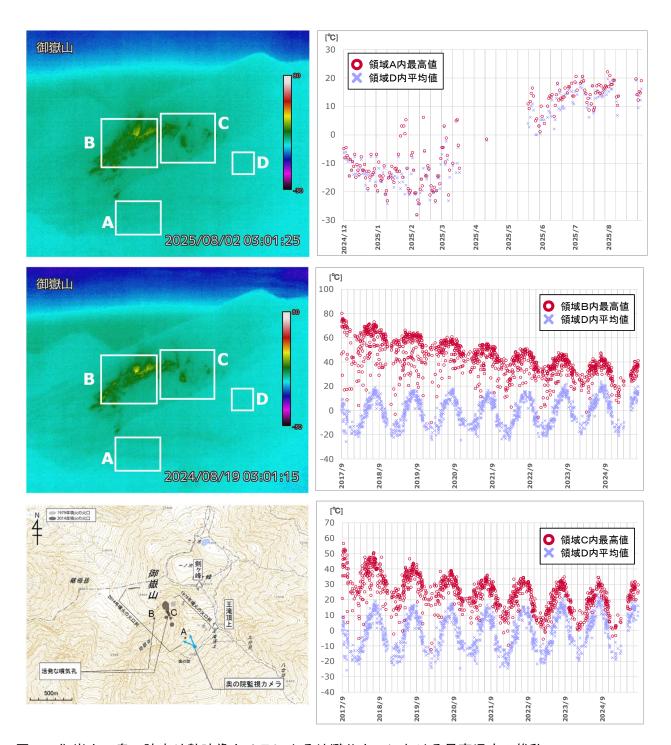


図3 御嶽山 奥の院赤外熱映像カメラによる地獄谷火口における最高温度の推移 (2017年9月13日~2025年8月31日)

左上の図は、カメラから見た各領域の範囲及び地熱域の分布を示します。

領域A~Cは地熱域、Dは非地熱域を示します。

左中の図は、1年前(2024年8月)の地熱域の分布を示します。

左下の図は、主な噴気孔・地熱域の位置、カメラの位置を示します。

右の図は左上図で示した地熱域の温度変化を示します。空白部分は欠測を示します。

- ・領域Aでは1月21日16時06分からの火山性微動の発生後、噴気活動が再開し、温度の高まりが認められましたが、5月頃から温度の低下傾向が認められます。その他の地熱域では、1年前(2024年6月)と比較して、地熱域の分布に特段の変化は認められません。
- ・地熱域の温度は、長期的な低下傾向がみられるものの高い状態が継続しています。

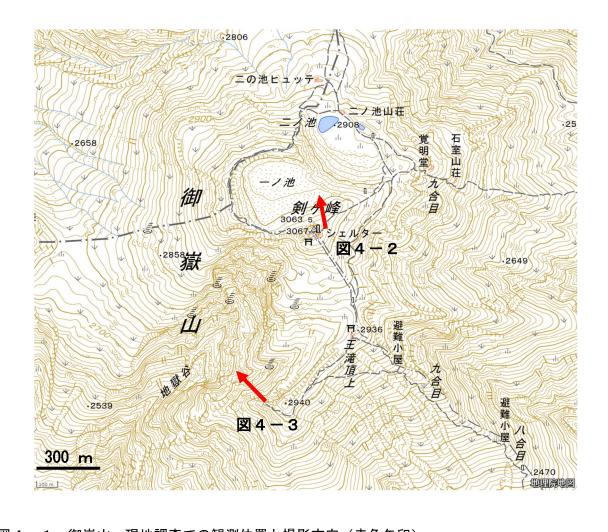
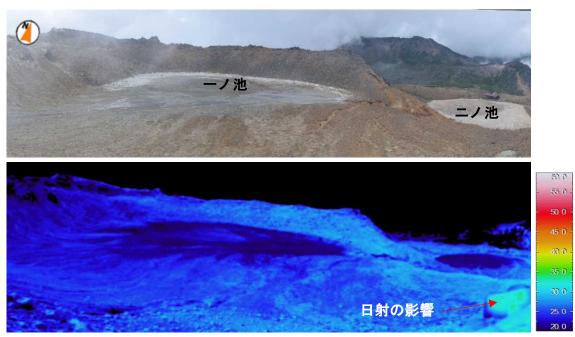
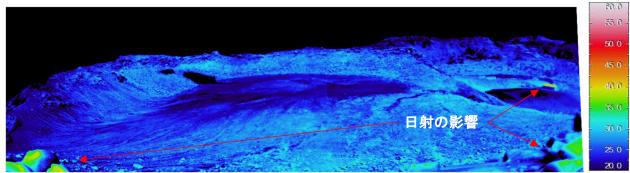
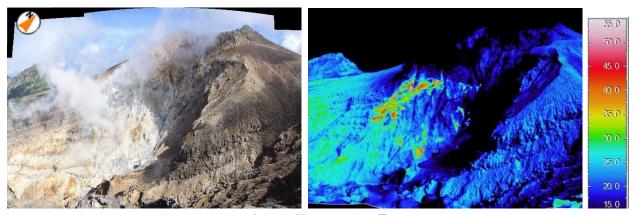
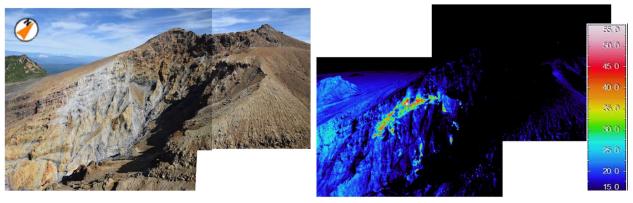




図4-1 御嶽山 現地調査での観測位置と撮影方向(赤色矢印)

2025年8月20日14時30分撮影(天気:曇り、気温:19.5℃)



2024年7月18日11時25分撮影(天気:晴れ、気温:17.3℃)


図 4 - 2 御嶽山 一ノ池及び二ノ池の可視画像及び赤外熱映像装置による地表面温度分布 観測位置及び撮影方向は図 4 - 1 に示しています。

・20日に実施した現地調査では、一ノ池及び二ノ池で噴気及び地熱域は認められませんでした。

- 6 - 御嶽山

2025年8月20日9時25分撮影(天気:曇り、気温:21.3℃)

2024年7月18日9時15分撮影(天気:晴れ、気温:16.6℃)

- 図4-3 御嶽山 地獄谷の可視画像及び赤外熱映像装置による地表面温度分布 観測位置及び撮影方向は図4-1に示しています。
 - ・20 日に実施した現地調査では、地獄谷火口の一部の噴気孔で引き続き活発な噴気活動と地熱域が認められました。
 - ・2024 年7月 18 日の観測結果と比較すると、最高温度の顕著な上昇や地熱域の拡大は認められませんでした。

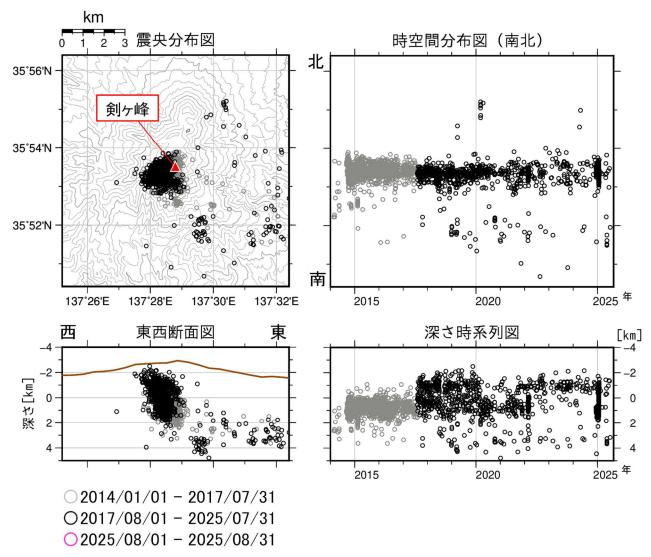


図5 御嶽山 震源分布図 (2014年1月1日~2025年8月31日) 2017年8月1日以降の震源分布は、震源計算に使用する観測点を新たに追加して再計算したものを示しています。 観測点の稼動状況により、求まる震源の数の減少や位置の精度低下が生じる場合があります。

・今期間、震源の求まった火山性地震はありませんでした。

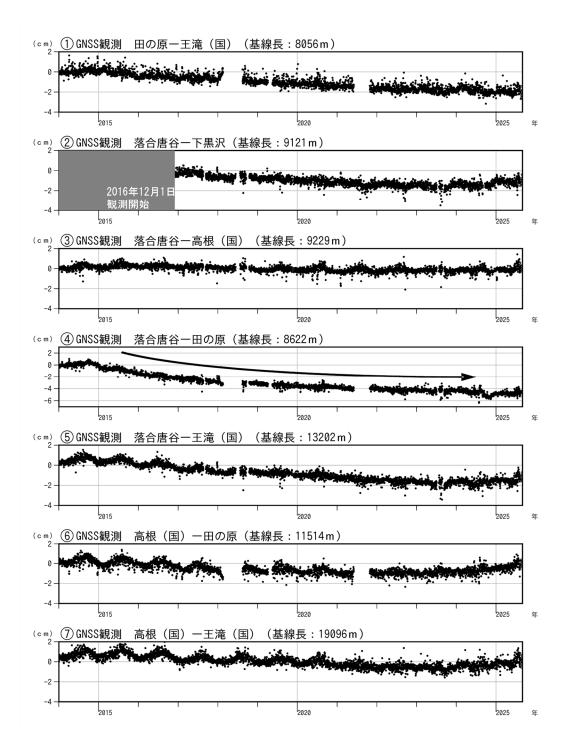
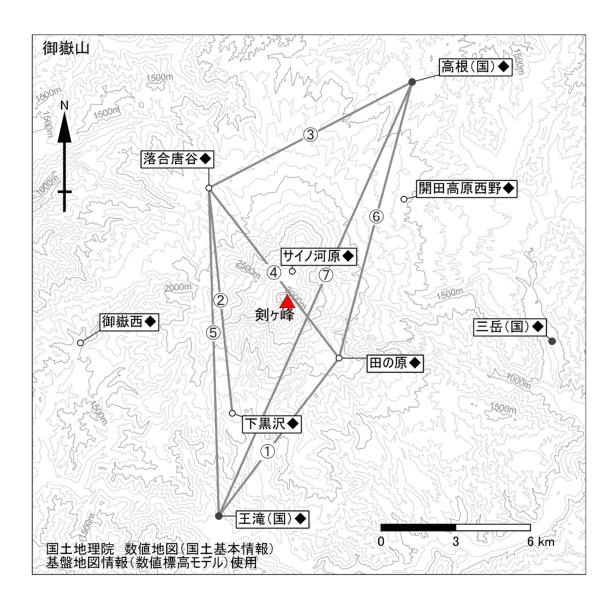



図6 御嶽山 GNSS 連続観測結果 (2014年1月1日~2025年8月31日) 空白部分は欠測を示します。④ではシステム更新に伴う調整中のため、一部の過去データにステップ状の変化がみられています。図中①~⑦に示す基線は、図7の GNSS 基線①~⑦のそれぞれに対応します。 (国): 国土地理院

・長期的には GNSS 連続観測の一部の基線で、2014 年 10 月頃以降、山体の収縮によると考えられる縮みの傾向が続き(例えば④矢印)、2024 年頃から停滞しています。

図7 御嶽山 GNSS 連続観測点と基線番号

白丸(○)は気象庁、黒丸(●)は気象庁以外の機関の観測点位置を示しています。

(国): 国土地理院

図中の GNSS 基線①~⑦は図1の④~⑤、図6の①~⑦の基線にそれぞれ対応しています。

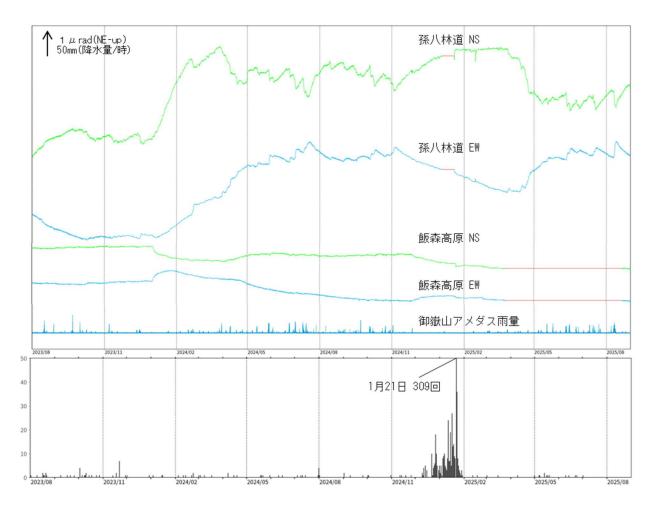
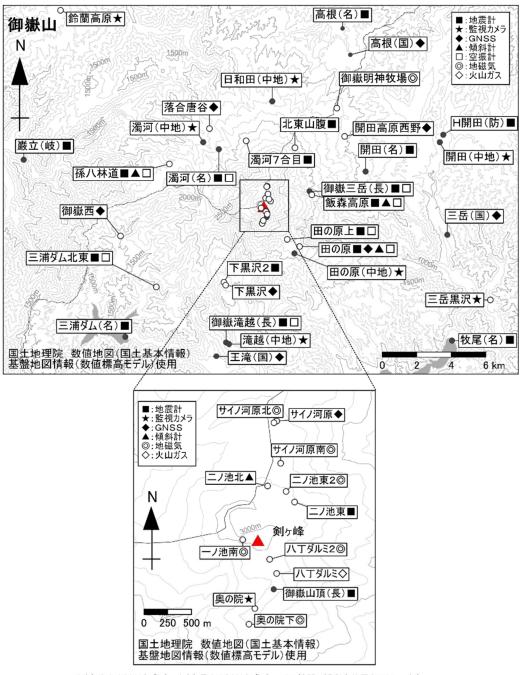



図8 御嶽山 傾斜変動と日別地震回数の推移(2023年8月1日~2025年8月31日) データは時間平均値で、孫八林道観測点のデータは潮汐補正済みです。 赤線部分は欠測を示します。 2024年1月以降、「令和6年能登半島地震」に伴うとみられる変動が認められます。

・今期間、傾斜計による観測では、火山活動によるとみられる変動は認められません。

小さな白丸(○)は気象庁、小さな黒丸(●)は気象庁以外の機関の観測点位置を示しています。 (国):国土地理院、(中地):中部地方整備局、(防):防災科学技術研究所、(名):名古屋大学、(長):長野県、(岐):岐阜県

図9 御嶽山 観測点配置図

今期間、「御嶽山頂(長)」観測点からのデータは入っていません。