令和3年(2021年)の九重山の火山活動

福岡管区気象台

地域火山監視・警報センター

火山性地震は少ない状態であり、噴気地帯の状況に特段の変化はなく、噴火の兆候は認 められません。長期的には、硫黄山付近の噴気地帯地下の温度上昇を示す全磁力の変化が みられており、わずかに火山活動が高まっている可能性があります。

○噴火警報・予報及び噴火警戒レベルの状況、2021年の発表履歴

2021年中変更なし 噴火	と予報(噴火警戒レベル1、	活火山であることに留意)
---------------	----------------------	--------------

02021 年の活動状況

・噴煙など表面現象の状況(図1~3、図4-①③)

硫黄山付近では、噴気地帯からの噴気が最高で噴気孔上 400m(2020 年:400m)まで上がりました。噴気活動及び地熱域の温度には、これまでと比較して特段の変化はみられません。

12月10日に実施した現地調査では、噴気地帯の一部で地熱域及び白色の噴気を確認しました。前回の観測(2020年3月17日)と比較して、地熱域の状況に特段の変化はみられませんでした。

・地震や微動の発生状況(図4-24、図5)

火山性地震の年回数は 69 回と前年(2020 年:120 回)と同様に少ない状態で経過しました。硫 黄山付近で震源が求まった火山性地震は、主に硫黄山と星生山周辺及び三俣山北西側のごく浅いと ころから深さ 2 km 付近に分布しました。

9月22日に三俣山付近を震源とする地震が一時的に増加し、19回発生しました。聞き取り調査 では、震源から北西に約1km離れた長者原付近で体に感じる揺れが確認されましたが、噴気や地 熱域の温度などその他の観測項目について特段の変化は観測されていませんでした。

火山性微動は2006年10月以降、観測されていません。

・全磁力変化の状況(図6)

全磁力連続観測では、長期的に噴気地帯北側の観測点で全磁力値が増加傾向、噴気地帯南側の観 測点で減少傾向が継続していますが、2021年4月頃からその傾向は鈍化しています。この全磁力の 変化傾向は硫黄山付近の噴気地帯地下で温度上昇(熱消磁)が起きていることを示唆しています。

この火山活動解説資料は気象庁ホームページ (https://www.data.jma.go.jp/vois/data/tokyo/STOCK/monthly_vact_doc/monthly_vact.php) でも閲覧することができます。

本資料で用いる用語の解説については、「気象庁が噴火警報等で用いる用語集」を御覧ください。 <u>https://www.data.jma.go.jp/vois/data/tokyo/STOCK/kaisetsu/kazanyougo/mokuji.html</u>

この資料は気象庁のほか、国土地理院、京都大学、九州大学、国立研究開発法人防災科学技術研究所及び 大分県のデータも利用して作成しています。

資料の地図の作成に当たっては、国土地理院発行の『数値地図 50mメッシュ(標高)』を使用しています。

・地殻変動の状況(図7、図8)

GNSS 連続観測では、硫黄山を挟む基線で緩やかな伸びが継続していましたが、4月頃から停滞しています。また、星生山北山腹-上野の基線で緩やかな縮みが継続していましたが、4月頃から停滞しています。

図 1-1 九重山 硫黄山の噴気及び地熱域の状況(12月28日 星生山北尾根監視カメラ)

移動平均 区間:7日 移動量:3日

図 1-2 九重山 星生山北尾根赤外熱映像装置による日別最高温度(2017 年 3 月~2021 年 12 月)

<2021 年の状況>

地熱域の温度には、これまでと比較して特段の変化はみられません。

※天候不良時は観測精度が低下します。特に観測精度が低いデータは、図から取り除いています。

図2 九重山 噴気の状況(3月19日 上野カメラによる)

図 3-2 九重山 A, C領域の可視画像及び地表面温度分布(定点1から撮影)

- ・A領域(赤枠)、C領域(白枠)では、引き続き白色の噴気が上がっているのを確認しました。
- ・前回(2020年3月17日)の観測と比較して、地熱域の温度の分布に特段の変化は認められませんでした。

図 3-3 九重山 C領域の可視画像及び地表面温度分布(定点4から撮影) C領域(白丸)では、引き続き白色の噴気が上がっているのを確認しました。

九重山

図 3-4 九重山 A, B, C, D領域の可視画像及び赤外熱映像装置による地表面温度分布 (三俣山西峰定点から撮影)

・A, C領域では、引き続き噴気活動及び地熱域の温度が高い領域を確認しました。

・B,D領域では、噴気活動及び地表面温度が高い領域は認められませんでした。

図4 九重山 火山活動経過図(1995年10月~2021年12月)

<2021 年の状況>

- ・噴気活動に特段の変化はなく、白色の噴気が最高で噴気孔上 400mまで上がりました。
- ・火山性地震の年回数は69回(2020年:120回)と少ない状態で経過しました。
- ・9月22日に三俣山付近を震源とする地震が一時的に増加し、19回発生しました。
- ・火山性微動は 2006 年 10 月以降、観測されていません。

図 5-1 九重山 震源分布図(広域)(2010年1月~2021年12月)

<2021年の状況>

硫黄山付近以外で震源が求まった地震は、主に星生山北西側2~4kmの深さ1~3km付近に分布しました。

※1 2020年7月の大雨により火口周辺の一部の観測点が障害となったため、7月8日から12月9日にかけて 震源の精度が低下しています。

図 5-2 九重山 震源分布図(硫黄山付近の火山性地震)(2010 年 1 月~2021 年 12 月)

<2021 年の状況>

硫黄山付近で震源が求まった火山性地震は、主に硫黄山と星生山周辺及び三俣山北西側のごく浅いとこ ろから深さ2km付近に分布しました。

※1 2020年7月の大雨により火口周辺の一部の観測点が障害となったため、7月8日から12月9日にかけて震源の精度が低下しています。

全磁力観測では、長期的に噴気地帯北側の観測 点で全磁力値が増加傾向、噴気地帯南側の観測点 で減少傾向が継続していますが、2021 年4月頃か らその傾向は鈍化しています。この全磁力の変化 傾向は硫黄山付近の噴気地帯地下で温度上昇(熱

消磁)が起きていることを示唆しています。

連続観測:星生山南東約4kmの全磁力値を基準とした場合の各観測点における全磁力日平均値。 連続観測の各観測点における空白部分は欠測を示しています。

2021 年2月1日以降については、星生山南東約4 kmの国土地理院の久住地球電磁気連続観測装置で 観測された全磁力値を基準としています。

【参考】全磁力観測について

図 6-2 九重山 全磁力観測点配置図及び噴気地帯 (A~D領域)の位置

連続観測点における 2017 年以降の傾向を「■(増 加傾向)」「■(減少傾向)」「■(傾向なし or デー タ不足等により傾向不明)」でそれぞれ示していま す。

赤破線で囲まれる領域は、硫黄山付近の噴気地帯の位 置を示します。

火山活動が静穏なときの火山体は地球の磁場(地磁気)の方向と同じ向きに磁化されています。これは、火山を構成す る岩石には磁化しやすい鉱物が含まれており、マグマや火山ガス等に熱せられていた山体が冷えていく過程で、地磁気の 方向に帯磁するためです。しかし、火山活動の活発化に伴い、マグマが地表へ近づくなどの原因で火山体内の温度が上昇 するにつれて、周辺の岩石が磁力を失うようになります。これを「熱消磁」と言います。そして地下で熱消磁が発生する と、地表で観測される磁場の強さ(全磁力)が変化します。これらのことから、全磁力観測により火山体内部の温度の様 子を知る手がかりを得ることができます。

例えば、山頂直下で熱消磁が起きたとすると、火口の南側では全磁力の減少、火口北側では逆に全磁力の増大が観測されます。この変化は、熱消磁された部分に地磁気と逆向きの磁化が生じたと考えることで説明できます。山頂部で観測した全磁力の値は、南側Aでは地磁気と逆向きの磁力線に弱められて小さく、北側Bでは強められて大きくなることがわかります。

ただし全磁力の変化は、熱消磁によるものだけでなく、地下の圧力変化などによっても生じることがあります。

GNSS連続観測では、硫黄山を挟む基線(③⑤⑥)で緩やかな伸びが継続していましたが、4月頃から停滞しています(赤矢印)。また、星生山北山腹ー上野の基線(④)で緩やかな縮みが継続していましたが、4月頃から停滞しています(青矢印)。

これらの基線は図8の①~⑧に対応しています。また、基線の空白部分は欠側を示しています。 2010年10月以降のデータについては、電離層の影響を補正する等、解析方法を改良しています。 2016年1月以降のデータについては、解析方法を変更しています。 2016年4月16日以降の基線長は、平成28年(2016年)熊本地震の影響による変動が大きかったため、 この地震に伴うステップを補正しています。 青色の破線内の変化は、九重山周辺のまとまった降水による影響と考えられます。 (国):国土地理院

図8 九重山 GNSS 連続観測点と基線番号

小さな白丸(○)は気象庁、小さな黒丸(●)は気象庁以外の機関の観測点位置を示しています。 (国):国土地理院

(国):国土地理院、(京):京都大学、(分):大分県

測器種類	観測点名	位置			む罢亡		
		緯度	経度	標高	成直向 (m)	観測開始日	備考
		(°′)	(°′)	(m)			
地震計	星生山北山腹	33°06.20′	131°13.78′	1, 282	-98	1999. 2.18	
	諏蛾守越	33°05.85′	131°14.50′	1, 501	-3	2016.12.1	広帯域地震計
	三俣山北東山麓	33°06.50′	131°15.58′	1, 199	-1	2017. 3.22	臨時観測点
空振計	星生山北山腹	33°06.20′	131°13. 78′	1, 282	2	2010. 8. 2	
	三俣山北東山麓	33°06.50′	131°15.58′	1, 199	1	2017. 3.22	臨時観測点
GNSS	星生山北山腹	33°06.20′	131°13. 78′	1, 282	3	2010.10.1	
	上野	33°07.96′	131°13.48′	982	4	2001. 3. 1	
	坊ガツル	33°05.98′	131°15. 77′	1, 234	2	2001. 3. 1	
	牧ノ戸峠	33°05.74′	131°12. 53′	1, 337	3	2001. 3. 1	
	久住高原展望台南	33°03.77′	131°15.82′	936	1.5	2018. 5.17	臨時観測点
傾斜計	星生山北山腹	33°06.20′	131°13. 78′	1, 282	-98	2011. 4. 1	
監視カメラ	上野	33°07.96′	131°13. 48′	992	8	1998. 3. 1	
	星生山北尾根	33°05.90′	131°14.10′	1, 489	2	2016.12.1	可視及び熱映像カメラ
	飯田大原	33°10.38′	131°16. 75′	1, 201	7	2019.11.1	
磁力計	硫黄山北	33°05.81′	131°14.11′	1, 509	2	2017. 1. 1	
	北千里浜	33°05.75′	131°14. 73′	1, 466	2	2017. 1. 1	
	硫黄山東	33°05.70′	131°14.54′	1, 463	2	2017. 1. 1	
	硫黄山南	33°05.50′	131°14.36′	1, 571	2	2017. 1. 1	
	星生山西	33°05.47′	131°13.82′	1, 705	2	2017. 1. 1	
	星生山東	33°05.39′	131°14.18′	1, 680	2	2017. 1. 1	
	久住高原展望台	33°03.81′	131° 15. 78′	943	2	2017. 1. 1	
火山ガス	硫黄山尾根	33°05.59′	131°14.30′	1, 559	1	2017. 1. 1	

表1 九重山 気象庁(火山)観測点一覧(緯度・経度は世界測地系)