
ISSN 2434-1789 
 
 

 
 
 
 
 

METEOROLOGICAL SATELLITE CENTER 
TECHNICAL NOTE 

 

No.66 (2022) 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

METEOROLOGICAL SATELLITE CENTER 
235, Nakakiyoto 3 Chome, Kiyose-shi 

Tokyo 204-0012, JAPAN 

OCTOBER 2022 



 

 

Himawari-8 Fog Detection Product Development 

 

 

MARUYAMA Takumi*1, ISHIDA Haruma*2, CHUBACHI Koetsu*3 

 

 

 

Abstract 

Fog monitoring is critical for safety in the areas of aviation, maritime navigation and road travel. Satellite observation 

provides wide coverage in monitoring of fog distribution over land and sea surfaces, but this technique alone does not 

allow effective discrimination between fog and low cloud (i.e., whether the cloud bottom touches the ground) because of 

its aerial nature. To address this issue, JMA’s Himawari-8 Fog product incorporates numerical weather prediction data for 

altitudes around the ground surface in addition to Himawari-8 observation results, thereby creating two-dimensional 

information for determining the presence of fog. This report describes the product’s algorithm, accuracy and considerations 

to be noted in usage. 

 

 

 

1. Introduction 

 

Information on fog areas is important for safety in 

aviation, marine navigation and road travel. In this regard, 

ground-based monitoring (e.g., visual observation and 

automated observation using visibility meters and live 

cameras) is useful. However, the information it produces 

relates only to areas near observation sites because fog 

distribution is characterized by high locality. Forecasting 

and air traffic control involving overall fog areas and 

related flow over land and sea requires information 

covering wider regions. Satellite observation provides 

global surface information covering both sea and land 

surfaces, and areas of low cloud (which may include fog) 

can be displayed with 2D distribution in RGB composite 

imagery using the data produced (e.g., Shimizu 2020). 

However, this technique is not ideal for distinguishing 

between fog and low clouds (i.e., whether the cloud bottom 

touches the ground) because it involves observation from 
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altitude. Against such a background, JMA’s Himawari-8 

fog detection product (referred to here simply as the “Fog 

product”) combines numerical weather prediction (NWP) 

data for areas around ground-surface altitude with 

Himawari-8 observation data (Bessho et al. 2016), creating 

information on fog over the whole of the earth’s surface. 

Fog product development is based on related research 

using satellite observation data and NWP data as per Ishida 

et al. (2014). 

This report outlines the Fog product (Chapter 2), the 

algorithm used (Chapter 3) and related accuracy (Chapter 

4). Further descriptions are provided on usage (Chapter 5) 

and future development (Chapter 6) before the conclusion 

(Chapter 7).   

 

2. Fog product outline 

 

Fog product examples are shown in Figures 1 (a), (b) 

and (c). Fog areas are shown in orange against the infrared 



imagery background (B13). The product provides 

information on Japan and the surrounding area for aviation 

usage, with a spatial resolution of 0.02° and a temporal 

resolution of 5 min. The NWP employed is the Meso-Scale 

Model (MSM) (JMA, 2022), the forecast time is three 

hours or longer with temporal interpolation, and the initial 

time is switched to the latest forecast every three hours (00, 

03, 06, 09, 12, 15, 18, 21 UTC). Fog is observed at multiple 

Figure 1: Fog product display 

(a), (b), (c): Fog product imagery; (d), (e): Night Microphysics RGB composite imagery; (f), (g): Natural 

Color RGB composite imagery; (h), (i), (j): Weather and visibility for ground observation points (red circles: 

fog observation points). (a), (d): 20 UTC on 30th September (nighttime); (b), (e), (f): 22 UTC, 30th 

September (day-night border); (c), (g): 23 UTC on 30th September (daytime) 2019. 

(a) (b) (c) 

(d) (e) 

(f) (g) 

Nighttime Daytime Day-night border 

(h) (i) (j) 



ground sites in Hokkaido (Japan’s northernmost major 

island) and the Tohoku region (northern mainland Japan) 

shown with red circles in Figures 1 (h), (i) and (j).  

For comparison, Night Microphysics RGB composite 

imagery (useful for nighttime cloud/fog identification) is 

shown in Figures 1 (d) and (e), and Natural Color RGB 

composite imagery (useful for daytime identification) is 

shown in Figures 1 (f) and (g) (See Shimizu 2020 for 

details of color interpretation). Night Microphysics RGB 

composite imagery clearly shows low clouds/fog in light 

blue for nighttime (red circles in Figure 1 (d)), but this is 

unclear at times on the day-night border (Figure 1 (e)). 

Natural Color RGB composite imagery clearly shows low 

clouds/fog in light grey for daytime (blue circles in Figure 

1 (g)), but this is also unclear at times on the day-night 

border (Figure 1 (f)). The Fog product mostly corresponds 

to the light-blue areas in Night Microphysics RGB 

composite imagery for the nighttime, and light-grey areas 

in Natural Color RGB composite imagery for the daytime. 

The Fog product also shows fog areas well for times on the 

day-night border. 

Color tones in fog monitoring using RGB composite 

imagery are affected by sunlight on the day-night border 

(i.e., at sunrise and sunset), which necessitates checking of 

multiple images in parallel. The Fog product eliminates 

this need for differences between day and night.  

 

3.  Fog product algorithms 

 

This chapter details the Fog product algorithms. Tables 1 

Table 1: Satellite observation data utilized in the 

Fog product 

Table 2: Fog product NWP data 

 

Table 3: Fog product threshold settings 

Figure 2: Fog determination flow chart 

 



and 2 list the observation bands of Himawari-8 and the 

NWP (MSM) data used. The product determines fog with 

set thresholds on values derived from satellite observation 

and NWP. For threshold setting, data from August 2015 to 

July 2016 were used. For product accuracy monitoring as 

described in Section 4, data from August 2016 to July 2017 

were used. 

 

3.1. Threshold setting 

Setting was based on observed incidences of fog, low 

cloud (stratocumulus, stratus, cumulus, 

cumulonimbus)/cloudy, and no cloud (cloud amount 0) as 

extracted from SYNOP and SHIP visual observation 

records, which are numerical codes used for reporting of 

surface observations. At the nearest grid to the visual 

observation site, data from satellite observation and NWP 

were characterized for each incidence. The distance 

between the visual observation site and the nearest 

neighbor grid is 0.01° or less in each of the latitude and 

longitude directions. As the product specifically targets fog, 

thresholds were also set to discriminate fog from low 

cloud/cloudy. 

 

3.2. Fog determination 

Figure 2 highlights the product formulation procedures, 

and Table 3 summarizes the discrimination thresholds (see 

Figure 3: Scatter plots of RB03/cos(SZA) and RB05/RB04 in the nearest grid to the SYNOP observation site in 

the daytime (SZA < 87 [deg]) between August 2015 and July 2016 
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Figure 4: Scatter plots of TB07－TB13 and TB13 in the nearest grid to the SYNOP observation site at nighttime 

(SZA ≥ 87 [deg]) between August 2015 and July 2016 
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appendix for legend).  

As a prerequisite for fog detection, the absence of upper 

and mid-level clouds is determined using TB13, nwpT700hPa 

and nwpRH700hPa, and day-night discrimination is then 

performed with reference to SZA to decide appropriate 

satellite observation bands for use in low-cloud 

identification. For daytime hours, B03, B04 and B05 (used 

for Natural Color RGB composite imagery), should be 

selected; for nighttime hours, B07 and B13 (used for Night 

Microphysics RGB composite imagery) should be used.  

Figure 3 shows RB03/cos(SZA) and RB05/RB04 values for 

the nearest SYNOP observation point in the daytime (SZA 

< 87[deg]) between August 2015 and July 2016. The target 

area was 22.4 – 47.6°N and 120.0 – 150.0°E, and plots 

were made separately for fog, low cloud/cloudy and no 

cloud. Based on the results, daytime thresholds were 

determined for identification of low cloud/fog areas. The 

dashed line in the figure indicates the product thresholds. 

As visible reflectance is generally higher in cloudy areas 

than in clear areas (e.g., Shimizu et al. 2017), 

RB03/cos(SZA) ≥ 0.3 was set as one condition. Since 

visible reflectance is high both in cloud areas and in those 

with snow and ice (e.g., Shimizu et al. 2017), erroneous 

detection may occur with the condition of RB03/cos(SZA) 

only. As per RB03/cos(SZA) ≥ 0.3 region in Figure 3 (c), 

the color of TB13 tends to be observed with sub-zero 

temperatures, indicating a potential snow ice area. In the 

wavelength region of near-infrared corresponding to B05, 

the reflectance of ice cloud/snow ice areas is lower than 

that of water cloud (e.g., Shimizu et al. 2017). Accordingly, 

Figure 5: Scatter plots of nwpRHsurf and nwpTsurf－TB13 in the nearest grid to the SYNOP observation site in the 

daytime (SZA<87[deg]) between August 2015 and July 2016 (nwpRHsurf≥nwpRHmax(700/850/925hPa) in red, 

nwpRHsurf<nwpRHmax(700/850/925hPa) in blue) 
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Figure 6: As per Figure 5, but for nighttime (SZA ≥ 87 [deg]) 
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the condition of RB05/RB04 ≥ 0.5 was added to avoid 

erroneous detection due to snow ice. However, as this 

condition does not support detection of both ice fog and 

snow ice areas, the current fog product targets water-

droplet fog only. Figure 4 illustrates TB07－TB13 and TB13 

for nighttime hours (SZA ≥ 87[deg]), and thresholds for 

low cloud detection were based on these results. As TB07 is 

lower than TB13 in low cloud areas consisting of water 

droplets (e.g., Ellrod 1995), TB07－TB13 ≤ -1.5 was set as 

the threshold. In Figure 4 (a), TB13 exceeds -10°C in most 

fog cases. Accordingly, the threshold of TB13 ≥ -10°C was 

added to reduce the number of detections without fog. 

After satellite data-based identification of low cloud 

areas that may include fog, final identification is 

performed using NWP data. Figures 5 and 6 show nwpRHsurf 

and nwpTsurf－TB13 for day and night, respectively. The 

thresholds used to identify fog areas were based on these 

results. Notably for nwpRHsurf, values are over 85% for most 

fog incidences. Accordingly, nwpRHsurf ≥ 85% was set as the 

threshold for fog indication. For nwpTsurf － TB13, the 

difference was smaller for fog than for low clouds (i.e., 

nwpTsurf and TB13 were closer). Accordingly, nwpTsurf－TB13 

≤ 10°C was set as another threshold for fog. In comparison 

made for humidity as derived from NWP in the 

700/850/925 hPa and ground layers, the highest humidity 

was seen at the ground surface in fog incidences. 

Accordingly, the condition of nwpRHsurf ≥ 

nwpRHmax(700/850/925hPa) was added.  

With the threshold settings shown in Table 3, the ratios 

of fog observations in SYNOP to fog detections with the 

Fog product were 47% for daytime and 47% for nighttime 

during the threshold survey period (August 2015 to July 

2016). The ratio of low cloud observations in SYNOP to 

fog detections with the Fog product was 47% for daytime 

and 45% for nighttime.  

 

Table 4: Evaluation of Fog product with SYNOP and SHIP (Aug 2016 – Jul 2017) 

Table 5: Fog product result evaluation with SYNOP comparison by season  

(Autumn: Sep. – Nov. 2016; winter: Dec. 2016 – Feb. 2017;  

spring: Mar. – May 2017; summer: Jun. – Aug. 2017) 

 



4. Fog product accuracy 

 

This chapter outlines Fog product evaluation and the 

results obtained. 

 

4.1. Accuracy evaluation 

 The Fog product was evaluated by comparing results 

against SYNOP and SHIP data. The product grid evaluated 

was that nearest the visual ground observation site, with 

exclusion of upper and middle cloud identified in the first 

step of fog determination. The evaluation area was 22.4 – 

47.6°N and 120.0 – 150.0°E. 

 

4.2. Evaluation results by day/night and by sea/land 

 Table 4 summarizes the evaluation results by day/night 

and by sea/land for the period between August 2016 and 

July 2017. Comparisons with SYNOP and SHIP data were 

regarded as evaluations for land and sea, respectively. 

Overall, 59% (daytime) and 52% (nighttime) of fog 

incidences were not detected due to the presence of upper 

and middle clouds in fog determination as compared to all 

cases in SYNOP fog observation. Hit rates were all above 

80% for day/night and sea/land, indicating a high hit rate 

for no fog. In evaluating hit rates for fog, focus was placed 

on threat scores. Although sea surface daytime scores were 

worse, values were around 0.3 for day/night and sea/land, 

indicating roughly even accuracy regardless of time zones 

and surface conditions. The undetected miss ratio was 

around 40 – 50%, and the false alarm ratio was around 50 

– 70%.   

 

4.3. Evaluation results by season 

 Table 5 shows evaluation results by day/night and by 

season for land. Worse threat score results were seen in 

winter for both day and night. Since fewer fog incidences 

were observed and the false alarm ratio was higher in 

winter, it is considered that erroneous fog detection for low 

cloud not including fog tended to occur. The higher winter 

miss ratio may be attributable to the current algorithm’s 

inability to detect ice fog (see Chapter 5 b). 

 

4.4.  Validation of the fog determination flow chart 

 Figure 7 shows numbers of extraction cases and 

extraction ratios for fog, low cloud/cloudy and no cloud in 

each process of fog determination (upper/middle cloud 

exclusion, low cloud extraction and fog detection). Here, 

Figure 7: Extraction cases (bars: left axis) and extraction ratios (%) (polygonal lines: right axis) for fog, 

low cloud and no cloud in each process of the fog determination shown in Figure 2 

(a) Nearest grid to the SYNOP observation site for daytime (SZA < 87 [deg]) between August 

2016 and July 2017 

(b) As per Figure 7 (a), but for nighttime (SZA ≥ 87 [deg]) 

(a)Daytime (b) Nighttime 



the extraction ratio is defined as the ratio of the number of 

extracted cases after low cloud extraction or fog detection 

to the number of cases after upper/middle cloud exclusion. 

Focusing on the extraction ratio for fog (orange polygonal 

lines), low cloud extraction misidentified 23% of daytime 

fog cases and 31% of nighttime cases as clear weather 

(corresponding to the reduction of polygonal lines due to 

low cloud extraction). In association with subsequent fog 

detection processing, 27% of daytime fog cases and 10% 

of nighttime cases were judged as low cloud 

(corresponding to the reduction of polygonal lines due to 

fog detection), and the final extraction ratios for fog (right 

end of the orange polygonal lines) were 50% for daytime 

and 59% for nighttime. Extraction ratios for no cloud after 

fog detection (right end of the grey polygonal lines) were 

1% for daytime and 2% for nighttime, while those for low 

cloud/cloudy (right end of the blue polygonal lines) were 

8% for daytime and 13% for nighttime. It can therefore be 

considered that in false detection, low cloud extraction was 

successful and low clouds (not fog) were mainly 

misidentified as fog.  

In Figure 2, the threat score evaluated with SYNOP 

when the detection result up to low cloud extraction (no 

fog) was 0.107 for daytime and 0.162 for nighttime, as 

shown in Table 6. Compared to the threat scores in Table 4 

(0.306 for daytime and 0.324 for nighttime) a combination 

of satellite data and numerical weather prediction data 

shows threat scores around 2.9 times higher for daytime 

and around 2.0 for nighttime. 

 

5. Notes on product usage 

 

The following points should be noted. 

 

a) No detection of fog under upper and middle clouds 

As judgement is based on satellite observation, fog 

invisible to satellites cannot be detected. Figure 8 shows a 

Fog product display with upper and middle clouds present. 

Fog was observed here at multiple ground stations in 

mainland Japan from the Tohoku region to the Chugoku 

region. The product detected fog in both regions, as shown 

by the blue circles. In regions surrounded by red circles, 

such as the Kanto/Koshin region, infrared (B13) imagery 

shows whitish areas, and fog was not detected because of 

upper/middle clouds. 

b) No detection of ice fog 

As low ice cloud (including ice fog) and snow ice areas 

appear nearly identical and are hard to discriminate in 

satellite observation, only fog exclusively consisting of 

water is detected. 

c) Dependence of detection accuracy on NWP model 

precision 

As fog identification in the product involves the use of 

NWP model predictions, accuracy may be impaired if 

Figure 8: Fog product display with upper/middle 

clouds (15 UTC, 30th December 2019) 

Table 6: Fog product result evaluation with SYNOP 

comparison for the case up to the low-cloud 

extraction process shown in Figure 2 

(Aug 2016 – Jul 2017) 



these predictions differ greatly from actual values.    

d) Difficulty of detecting local fog areas too small for 

satellite spatial resolution and very thin fog 

The characteristics of fog areas smaller than the 

horizontal resolution of Himawari-8 (around 2 km at the 

sub-satellite point in infrared bands) cannot be readily 

captured. Extremely thin fog through which the ground is 

visible is also difficult to accurately characterize in satellite 

observation, and may remain undetected. 

e) Tendency for false detection at sunrise and sunset 

Figure 9 shows an example of false fog detection at 

sunrise. The product results in Figure 9 (a) show detection 

of an unnatural linearly interrupted fog region inside the 

red circle. The daytime detection algorithm with 

visible/near infrared bands is used to the east of this line, 

and the ground surface is misidentified as fog. As 

mentioned above, reflectance corrected using SZA 

(RB03/cos(SZA)) is used for daytime fog detection. In 

Figure 9 (b), RB03/cos(SZA) imagery shows brightness in 

the red circle because SZA is large, and the corrected 

reflectance is higher at sunrise/sunset. Thus, occurrence of 

false fog detection tends to increase at sunrise and sunset 

due to the excess of the low cloud extraction threshold 

(RB03/cos(SZA) ≥ 0.3). In addition, if the NWP model 

predicts fine nighttime weather on land, the decrease in 

nwpTsurf due to radiative cooling and the consequent 

increase in nwpRHsurf may cause an excess in the threshold 

for fog determination based on NWP data (e.g., nwpRHsurf 

≥ 85%). It is therefore presumed that the possibility of false 

detection on land is higher at sunrise than at sunset.  

 

6. Development plans 

 

Potential product improvements are outlined here. 

 

6.1. Introduction of AI 

As detailed above, the product identifies fog based on 

set thresholds with values derived from satellite 

observation and NWP. However, the current thresholds are 

based on subjective human judgment, and may not be 

optimal. Against this background, machine learning-based 

optimization for threshold setting may increase objectivity. 

The use of additional elements such as time-change 

information, peripheral grid information and topographical 

information may also be effective in this regard. Potential 

machine learning techniques include the Convolutional 

Neural Network (CNN) approach (e.g., Alzubaidi et al. 

2021), which involves consideration of the spatial 

continuity of peripheral lattice observation values, and the 

LSTM (Long Short-Term Memory) approach (e.g., Van et 

al. 2020), which involves consideration of time-series 

observation values. Alternatives to building an original AI 

model include exploring suitable products such as 

CLAUDIA3 (Ishida et al. 2018), with which cloud areas 

Figure 9: Erroneous fog product detection (2240 UTC, 23rd October 2018) 

(a: Fog product; b：RB03/cos(SZA) imagery) 

(a) (b) 



are determined using a support vector machine. 

 

6.2. Introduction of Optimal Cloud Analysis (OCA) 

Calvert and Pavolonis (2010) are among a number of 

researchers to have described calculation for derivation of 

cloud thickness based on cloud optical and microphysical 

properties determined from satellite observation. In this 

context, JMA is currently developing a product called 

Optimal Cloud Analysis (OCA) (Hayashi 2018), which 

may help to improve accuracy with incorporation of cloud 

properties. The product includes cloud top height 

information; if cloud thickness can be calculated, it is also 

possible to estimate cloud base height. This may facilitate 

more direct identification of fog areas (i.e., cloud bottom 

with ground contact). 

 

6.3. Use of near-live ground fog observation data 

Ground fog observation data and live camera images can 

also be used as near-live data for clear accuracy 

improvement.   

 

7. Conclusion 

 

This report describes JMA’s Fog product, along with 

related usage, algorithms and accuracy. The product 

provides the following advantages:  

 

a) Fog areas can be determined over wide areas in 2D 

(including sea surface). 

b) Fog can be monitored virtually free of concerns over 

differences between day and night. 

c) High-probability fog areas can be displayed based on 

combination with NWP data.  

As described in Chapter 6, the product still has 

significant potential for further development, which is 

currently being implemented for optimal output. 
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Appendix: Glossary of terms 
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要旨 

霧域の把握は航空機、船舶、自動車等の安全な交通のために重要である。霧域の監視において、海上も含め

た広範囲に及ぶ面的な情報を得る手段としては、衛星観測が有効である。ただし、衛星は雲域を上空から観測

するため、衛星観測のみから霧と下層雲（雲底が地表に接しているかいないか）を区別することは困難である。

このため、気象庁では、ひまわり 8号の観測データに加えて、地上付近の数値予報データの情報も考慮して霧

の有無を判定し、面的な霧域の情報を提供する「ひまわり 8 号霧監視プロダクト」を開発した。本報告では、

本プロダクトのアルゴリズム、精度、利用上の留意点等について記述する。 
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