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Algorithm Theoretical Basis for the Himawari-8, -9/AHI Cryosphere Product
Part 1: Snow Cover
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Abstract

Himawari-8 and -9 new-generation meteorological satellites operated by the Japan
Meteorological Agency (JMA) are equipped with superior Advanced Himawari Imagers (AHIs).
These optical units are vastly superior to previous versions (e.g., in terms of the number of spectral
bands, spatial resolution, temporal resolution and regional rapid scanning), and support the
development of a snow/ice detection algorithm. In the work reported here, the increased number of
spectral bands was leveraged for the development of a new algorithm by introducing data on the
Normalized Difference Water/Vegetation Indices (NDWI/NDVI), which support the identification
of snow cover on vegetation. Data from full-disk observations performed at 10-minute intervals were
also used to support the proposal of a new method for the combination of multiple daily snow
identification results into a single outcome. The results of validation via comparison with the
Automated Meteorological Data Acquisition System (AMeDAS) snow depth dataset indicated
significantly better performance than that of the current product defined by a part of the cloud

detection algorithm for winter over snow-covered terrain.

1. Introduction

Consisting of snow, river/lake/sea ice, glaciers and
frozen soil, the cryosphere plays an important role in the
climate system with its effects on the surface energy budget,
hydrologic circulation, primary productivity and sea level.
Climate change can be visualized in consideration of the
cryosphere because of its sensitivity to temperature change
(Stocker et al. 2013).

Recent years have seen a reduction in the presence of

glaciers, sea ice, ice shelf content, snow and permafrost,

representing a constant shrinkage of the cryosphere
(Stocker et al. 2013). Increased surface air temperature
causes snow and ice to melt more quickly, resulting in the
exposure of low-albedo surfaces. This in turn creates higher
temperatures and changes the climate system as a result of
ice-albedo feedback. Against such a background,
cryosphere observation and monitoring are important.
Among the various approaches to cryosphere
monitoring, ground observation (such as that performed
using the Automated Meteorological Data Acquisition

System (AMeDAS) operated by the Japan Meteorological
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Agency (JMA)) provides data on snow depth at more than
300 sites across Japan and yields information on discrete
two-dimensional  snow  distribution.  Geostationary
meteorological satellites such as JMA’s Himawari series
also provide cryosphere information with high spatial and
temporal  resolution. Cryosphere conditions can
additionally be determined in consideration of the radiative
characteristics of snow and ice (e.g., Klein et al. 1998, Hall
et al. 2006, Stamnes et al. 2007, Chen et al. 2014). Snow
detection algorithms have been developed for past satellites
(e.g., Ohkawara 1996, Uesawa 2006), and JMA’s
Meteorological Satellite Center (MSC) has provided a
snow cover and sea ice product as a part of the Himawari-
8 and -9 Cloud Mask Product (referred to here as CMP or
the current product/algorithm; Imai and Yoshida 2016). As
the algorithm for this product is a partly revised version of
that developed for the Meteosat second generation by
NWC SAF (Meteo-France 2013), there are still some issues
with snow cover and sea ice product output. Thus, we can
make improvements at several points to offer better
products. 1) The Advanced Himawari Imager (AHI) on
board Himawari-8 and -9 have high spectral, temporal and
spatial resolutions. These characteristics were utilized to
develop a more accurate snow cover and sea ice detection
algorithm. 2) The algorithm is not fully suited to the
spectral response functions of AHI bands, and generally
underestimates snow cover and sea ice extent. 3) The
algorithm produces misclassification in terms of snow
cover on areas of vegetation. Remote sensing of such cover
is challenging because vegetation reflectance spectra vary
by type and season. However, very few studies have
addressed this area of research (e.g., Chen et al. 2018).
Against this background, two indices were incorporated
into the algorithm in consideration of snow and vegetation
spectral information.

In this report, Section 2 describes the features of
Himawari-8 and -9, Section 3 outlines the snow detection
algorithm for single scenes, Section 4 highlights the newly
developed algorithm for merging multiple scenes, Section
5 presents results and related discussion, and Section 6
summarizes the content. Details of the new sea ice

detection algorithm also developed are given in Part 2 of

Table 1 Himawari-8 and -9/AHI specifications

Central Spatial
Band )
wavelength | resolution
number
[um] [km]
BO1 0.47 .
B02 0.51
B03 0.64 0.5
B04 0.86 1
BO5 1.6
B06 2.3
B07 3.9
B08 6.2
B09 6.9
B10 7.3
2
BI11 8.6
B12 9.6
BI13 10.4
B14 11.2
BI15 12.4
B16 13.3

the AHI cryosphere product content (Ioka et al. 2019).

2. Himawari-8/-9 and AHI

Himawari-§ and -9 are the world's first next-
generation geostationary meteorological satellites (Bessho
et al. 2016). They were launched on 7 October 2014 and 2
November 2016, respectively. Himawari-8 has been
operational since 7 July 2015, and Himawari-9 entered
backup operation service on 10 March 2017. The units took
over the East Asia and Western Pacific observation
previously conducted for more than three decades by five
GMS (Geostationary Meteorological Satellite) units and
two satellites from the MTSAT (Multi-functional Transport
Satellite) series. As the technical details of Himawari-8/-9
and the AHI are described elsewhere (Bessho et al. 2016),
we briefly introduce the specification of AHI in this
paragraph. The imager has 16 spectral bands (see Table 1
for specifications), performing full-disk observation every
10 minutes and observation of the Japan area and specific

target areas every 2.5 minutes. It can capture full-disk
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imagery with a spatial resolution of up to 0.5 km.

N
.................. "
v
3. Algorithm for Single Scenes :
Y Out of
. . . . Region
The proposed algorithm for identification of snowy N
areas under clear sky conditions consists of a part for single v
Cloud
scenes and another for merging multiple scenes. This High conf
section describes the former. As shown in Figure 1, the Ni
expression involves consideration of geometrical Cloud v

limitations (as described in Section 3.1), desert (3.2), high-
confidence cloud (3.3.1), low-confidence cloud (3.3.2) and
snow detection testing (3.4), successively. It should be
noted that cloud detection testing involves one stage for
clouds easily distinguishable from snow cover and another
for thin ice clouds that are more difficult to distinguish.

Geometrical conditions and high/low-confidence cloud

Low conf

N

Confidence
=Low

Fig. 1 Flow of the snow cover detection algorithm for

tests are common in sea ice detection algorithm (Ioka et al. .
single scenes

2019). Table 2 shows the specifications of the new snow

cover product. Table 2 Specifications of the new snow cover product

Table 3 shows all thresholds of the new snow
detection algorithm for single scenes, with Ry xum
representing solar reflectance at X.X pm and Tx xum

representing brightness temperature at X.X um.

3.1 Geometrical Conditions for Detection
This phase involves the identification of geometrically
unsuited regions. The algorithm may output invalid values

based on tests for the factors below.

Region

Full disk

Spatial resolution

For each pixel of

2 km resolution HSD
(Japan Meteorological
Agency 2017)

Time range

24 hours (daytime analysis
only)

Temporal resolution

Every 10 minutes

Table 3 Thresholds of the new snow cover detection
algorithm for single scenes

(1) Solar Zenith Angle

The algorithm is valid only for daytime observation SZA <85 [deg]
because observation data from the visible and near-infrared Geometry |Latitude| > 20 [deg]
bands are needed. As the results of snow detection are SungllntRAngle > 20 [deg]
unreliable with very high solar zenith angles, a threshold is Desert 086um 4

: R1.6].L1’l’l
set for this value. T T 2100 [K]
High ;_%m Tmpm <00 [K]
(2) Latitude Conf, | owm  [llawm =™
. . . . Cloud T73um > 233.15 [K]

It is assumed that tropical regions will have no snow 7 T 30
cover. Rainforest areas may be wrongly identified as snow Low 10.4um ~ T12.4pm > 3.0 [K]
cover due to their high reflectance at 0.86 pm. Accordingly, Conf. Ti3.3m = Ti.2m > =60 [K]
low-latitude areas are ignored. NDWI > —0.94NDVI + 0.29

Snow NDWI > 0
T10.4um < 280.15 [K]
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(3) Sunglint Angle

A geometrical condition close to specular reflection
will produce higher reflectance than expected and cause
misdetection. For estimation of proximity to specular
reflection, the sunglint angle (also known as the cone angle)

is defined as

Sunglint Angle =
Arccos{cos(SZA) cos(VZA) + (1
sin(SZA) sin(VZA) cos(RAA)},

where SZA is the solar zenith angle, VZA is the viewing
(satellite) zenith angle and RAA is the relative azimuth
angle, which is the difference between the solar and
viewing azimuth angles. Regions where the sunglint angle

is below the threshold are ignored.

3.2 Desert Detection
(1) Ro.s6um/Rium

Both desert areas and water cloud regions have high
reflectance at 0.86 and 1.6 um. However, for desert areas,
reflectance at 1.6 pum is higher than that at 0.86 um,
while the opposite applies for water cloud areas. The
algorithm uses these characteristics to distinguish between

the two. This test is run before the cloud tests.

3.3 Cloud Detection

The algorithm involves two stages of cloud detection
tests. The first detects obvious clouds and labels them as
“High-confidence Cloud.” If any pixel has this label, the
detection process will terminate. If not, the second stage is
processed to detect ambiguous clouds, which are labeled as
“Low-confidence Cloud.” Snow cover detection is run for
pixels labeled “Fine Weather (= No Clouds)” and “Low-
confidence Cloud” because the latter may contain regions
other than cloud, such as ocean areas with abundant water
vapor. These labels are used in the multiple-scene

combination process described in Section 4.

3.3.1 High-confidence Cloud Detection
Pixels returning positive test values here will be

labeled as “High-confidence Cloud,” and the algorithm will
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Fig. 2 Dependence between brightness temperature (BT)
and brightness temperature difference at certain cloud
optical thicknesses (COTs) and effective radius (R.s)
conditions (revised from Hayashi 2018). Red: liquid water
cloud; blue: ice cloud.

terminate.

(1) Tsum = Tio.gum

Both 3.9 and 10.4 pm radiance show equivalently
high atmospheric transmittance. Using this characteristic,
the solar reflection component at 3.9 um can be estimated
by subtracting Tg4ym from Tjg,y. The threshold can be
applied to detect water clouds, which show high reflectance

at3.9 pum.

) Tsgum = Ttz

Generally, ice clouds are harder to distinguish from
snow than liquid water clouds due to the similarity of their
radiative characteristics. In ice clouds (especially those
with a small effective radius), Tgeum — Ti12um Will be
greater than 0, while areas other than ice clouds usually
have values below 0 (Figure 2, top). Accordingly, Tg ¢m —

T112um can be used to indicate the presence of ice clouds.
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(3) Tr.3um

The 7.3 pm band is one of the three water vapor
bands of the AHI, and responds to the lowest altitude
among them. It is used to detect clouds based on water

vapor absorption.

3.3.2 Low-confidence Cloud Detection
Pixels returning positive test values here will be
labeled as “Low-confidence Cloud,” and the algorithm will

proceed to the snow detection tests.

(D) Ty0.4um = Th2.4pm

As shown in Figure 2 (bottom), thin clouds, regardless
of water or ice status, exhibit a large brightness temperature
difference between 10.4 and 12.4 pm due to their
differences in emittance. However, as areas with large
amounts of water vapor could show similar differences, this
index results in detection of thin clouds and concentrated
water vapor areas alike. Accordingly, this threshold is used

for low-confidence cloud detection.

(2) T133um = T11.2um

CO; molecules in the atmosphere significantly affect
spectral radiance at 13.3 pm, which is known as the CO,
band. Brightness temperature at 13.3 pum is lower than
that at the window band (11.2 pm) in cloud-free surface
areas and low-level clouds. In high-level clouds, the CO,
effect is small and the difference between T, and
Ti33um 1s also small. This test enables detection of high-
level ice clouds that could be hard to distinguish from

snow-covered areas.

3.4 Snow Detection

In general, snow cover and vegetation have
conflicting reflective characteristics. Snow surfaces exhibit
higher reflectance in visible regions and lower reflectance
in near-infrared regions, while vegetation areas have the
opposite characteristics. As this makes snow detection in
forest areas problematic, an algorithm for this purpose was
proposed.

Pixels returning positive test values here will be

labeled as “Snow,” and otherwise as “No Snow.”

120° 125° 130° 135° 140° 145° 150°
50" { =i
45 g 45°
40 ] ~ - 40°
35° ¥ 35°
30’ 30’
25° 25°
20° — 20°
120° 125° 130° 135° 140° 145° 150°

Fig. 3 AMeDAS with snow cover observation. Light blue:
without sunshine observation; orange: with sunshine
observation.

(1) NDWI and NDVI

This detection process involving the snow cover
threshold requires satellite and ground snow observation
data covering a period of several months as a minimum. In
this study, data from Himawari-8 full-disk observations and
AMeDAS snow depth observations (both made every 10
minutes) from 1 November 2015 to 30 April 2016 were
used.

Surface observation is carried out at around 1,300
stations using automatic observation equipment under the
AMeDAS framework, in which snow depth is observed at
more than 300 stations in areas of heavy snowfall (Figure
3). In this study, AMeDAS snow depth data were used to
determine the threshold in tests using NDWI and NDVI.

In this algorithm, NDWI is used as a snow cover index
and NDVI is used as a vegetation index. The threshold
defined for NDWI is loosened when NDVI is large. The
threshold determination method is as follows (Figures 4
and 5):

i.  Make spatial and temporal matchups between
AMeDAS snow depth and AHI observation.

ii.  Apply desert, high-confidence cloud and low-
confidence cloud detection in the same order as the
above algorithm.

iii.  For points not labeled as cloud, calculate NDWI
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1.0

(2) Normalized Difference Water Index (NDWI)

If the above conditions alone were used for snow
cover detection, clear areas of vegetation (characterized by
high normalized difference vegetation index (NDVI)
values and negative NDWI) may be misidentified as snow.
Accordingly, it is assumed that areas of negative NDWI are
not covered with snow based on snow reflective

characteristics:

R .64pm Rl.éum

0
NDWI = ) 2
R0.64—pm + R1.6pm ( )
R —R
NDVI = 0.86um 0.64um (3)

R0.86pm + R0.64—pm

Another index involving Rjsium and Rjgum (the
normalized difference snow index, or NDSI) is also
available, but the NDWI was chosen for its superior snow

detection scores.

(3) Tiodm

Removing data on very-high-temperature areas such
as those of bare land with no snow cover helps to prevent
misidentification of rainforest areas as snow (Hall et al.
20006).

4. Algorithm for Merging of Multiple Scenes

The algorithm enables merging of snow detection
results from multiple scenes, taking all outcomes for a
particular day and combining them to form a daily result.
Three points should be noted regarding this procedure: 1)
The current algorithm introduces merging via an OR
condition (i.e., snow is considered present if one or more
scenes are determined to contain snow), which could be
strongly affected by misdetection for just one scene.
Merging with an AND condition can be said to have the
same issue. Accordingly, OR and AND conditions should
be avoided. 2) Although the new algorithm has been
improved in many ways, misclassification bias may be
present. The merging method helps to reduce this. 3) In
snow detection results for a single scene, pixels labeled as
cloud are treated as equal to pixels for which snow

presence/absence could not be determined due to cloud.
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Fig. 6 Algorithm for merging of daily results. nyy indicates the number of relevant scenes for the day.
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Fig. 7 Sample results for a day and combination outcomes. Left: no snow; right: snow.

The flow of the merging process is shown in Figure 6.
All test processes are the same as those of the algorithm for
single scenes. Fy,F,,S; and S, are threshold values for
determination of clear weather or otherwise (F;, F,) and
SNOw cover or no snow cover (S;, S,). If large values are set
for F; and F,, snow detection will be more precise but the
area in which detection is not possible will be bigger. If
large values are set for §; and S,, areas with no snow
can be detected more accurately, although less so in snow-
covered areas. S; =S, =1 corresponds to an AND
condition, and S; =S, =0 corresponds to an OR
condition (Figure 7). The current version involves the
application of an OR condition in the merging process. If
S1 and S, are set appropriately, misdetection in certain
scenes within a day will be mitigated and accuracy will

increase.

5. Results and Discussion

The score system used is outlined here. The following
equations are used to calculate the coverage ratio, OA, PA
and UA:

Coverage ratio = A+B+C+D 4)
A+B+C+D+E’
Overall accuracy (0A)
_ A+D %)
“A+B+C+D’
, A
Producer’s accuracy (PA) = 11C’ (6)
User’s accuracy (UA) = A4 @)
A+B’

where A to E are sample counts as defined in Table 4.
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The coverage ratio is the ratio of scenes with content other
than clouds. OA is total classification accuracy in
consideration of snow-covered and non-snow-covered
areas. UA refers to the probability that a pixel classified as
snow by the AHI is actually in this class, whereas PA refers
to the probability that snow cover will be classified as such.
It should be noted here that the gap between UA and PA is
considered to be a measure of under- or over-estimation in
snow detection. That is, UA > PA indicates underestimation,
whereas UA < PA indicates an overestimation.

First of all, as discussed in Section 4, various
combinations of F;,F,,S; and S, can be considered. An
example of this is outlined here. Figure 8 shows the
coverage ratio defined by Equation (4). To maintain a high
coverage ratio with high accuracy, appropriate values of F;
and F, should be chosen. In this study, F; = F, = 0.1
from Figure 8 was set, and S; = S, = 0.5 was used to set
the middle between OR and AND conditions.

Figures 9, 10 and 11 (left) show RGB composite
imagery
examples of snow detection results produced by the current

succinctly visualizing snow-covered areas,
algorithm and examples from the proposed new one,
respectively. It should be noted that results from the current
algorithm (Figure 10) are simply a by-product of CMP and
are hard to validate because there is no distinction between
non-snow-covered areas and clouds. It is apparent that the
new algorithm allows detection of larger areas of snow
cover on the FEurasian continent, and that the
underestimation of the current algorithm is corrected.
Figure 12 (monthly results) and Table 5 (overall averages)
indicate that the new algorithm produces sufficiently
accurate snow cover detection for winter (i.e., scores are all

around 0.9 or more).

Table 4 Error matrix of sample counts for defining scores

Himawar] Ground Snow No Snow
Snow A B
No Snow C D
Cloud E

Coverage

T T T T
0.2 04 0.6 0.8

F1

Fig. 8 Coverage ratio corresponding to F; and F,.

Figure 11 shows examples of results from the single-
scene algorithm and the multiple-scene merging algorithm.
It can be seen that the cloud area detected using the single-
scene approach is smaller with the new merging algorithm.
All detection scores are also improved in comparison with
single scenes (OA, PA and UA; Table 5). Figure 12 also
shows that merging with an OR condition causes
significant overestimation (better PA but poorer UA), while
an AND condition creates significant underestimation
(better UA but poorer PA). Thus, the new merging method
mitigates the overestimation and underestimation observed
with the single-scene method, while OR and AND

conditions do not.
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ural color RGB image for 03:00 UTC on 08 Feb 2016,

Fig. 9 Himawari-8/AHI natu
Cyan indicates ice clouds, snow-covered areas and sea ice.

20N
100E 110E 120E 130E 140E 150E 160E 170E 180

Fig. 10 Snow detection results from the previous algorithm (multi-day merging until 08 Feb. 2016).
Light blue: snow/sea ice; grey: not applicable.

\
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—
120° —
40°

Cloud Snow/Sea ice Sea Land

U (Low confidence) (High confidence) (High confidence)

‘ Snow/Sea ice Sea ice Sea Land
(High confidence) (Microwave) (Low confidence) (Low confidence)
Fig. 11 Snow detection results from the new algorithm.

Left: single scene (08 Feb. 2016, 0300 UTC); right: one-day merge (08 Feb. 2016).

Table 5 Snow detection scores with the new algorithm, single-scene and 1-day merge

(averaged for the period Nov. 2015 — Apr. 2017).
1-day merge 1-day merge 1-day merge
Single scene F,=F, =01 F,=F, =01 F,=F, =01
OR condition AND condition $5=5,=05
Overall Accuracy 0.924 0.764 0.877 0.947
Producer’s Accuracy 0.928 0.981 0.613 0.931
User’s Accuracy 0.889 0.567 0.979 0.901
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Accuracies: multiple scenes
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Fig. 12 Monthly snow detection scores from the new
algorithm compared with AMeDAS from Nov. 2015 to
Apr. 2017

6. Summary

The new optical imagers AHI for the new generation
meteorological satellites Himawari-8 and -9 have been
improved in terms of their spectral, temporal and spatial
resolution. In this study, a new snow detection method was
proposed to fully leverage the features of these units. The
approach involves: 1) new thresholds for single scenes
based on the utilization of new spectral bands (e.g., NDWI
and NDVI) for more accurate detection of clouds and snow
cover, and 2) a merging method that comprehensively
leverages full-disk observations conducted every 10
minutes and combines multiple daily outcomes into a more
accurate single daily result. Application of the method
results in identification of greater snow cover extents and
significantly higher values for all scores (OA, PA and UA),
and can therefore be considered to improve snow detection

accuracy.
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