第5章 地上風の推定*

強風、風向の急変や強い横風などは、離着陸する 航空機に重大な影響をもたらす。基準値以上の横風 の場合には離着陸が制限され、また地上風の風向や 風速によって離着陸する滑走路が決められる。この ように地上風は、航空機の運航にとって重要な要素 の一つである。ここでは、衛星画像から地上風を推 定する方法について述べる。なお、地上付近の強風 や風の急変などと密接に関連する低層の乱気流とウ インドシヤーについては 3.3 節で述べた。

5.1 地上風を推定する方法

5.1.1 雲の移動による下層風の推定

下層風の実況や予想がしばしば地上風の予想に使われるように、地上風の予想にとって下層風は有用なデータとなる。以下、衛星画像から直接的に下層風を推定する方法について述べる。ここでの下層とは850hPa(約5,000ft)付近を指す。

短時間間隔で観測された複数の衛星画像で、雲や 水蒸気画像の模様を追跡し、それらが風とともに移 動するとして風が求まる(衛星風)。気象衛星センタ ーでは、このような手法をマンマシンで行い、上層 雲の移動から上層風、水蒸気画像の模様の移動から 中・上層風、下層雲の移動から下層風を算出している

(P62のコラム参照)。このようにして算出された風は、数値予報の初期値データとして利用されている。

気象衛星センター発行の「気象衛星観測月報」 (P56 のコラム参照)を用いた衛星画像の動画によっても下層風の推定ができる場合がある。具体的な 方法については山本(2000)の解説がある。また、 この解説は即時配信されている衛星画像を用いた定 性的な下層風の推定にも参考となる。

5.1.2 台風や低気圧に伴う雲パターンからの推定

台風や低気圧の中心位置や中心気圧は、地上風推 定の大まかな目安になる。それらの中心位置につい ては、発生期を除けば、衛星画像上の雲のパターン 認識からおおよその位置を推定できることが多い。 西村ら(1997)は低気圧中心の推定方法を具体的に 示し、その精度の検証結果を示している。また、そ れらの中心気圧や風速などについても、雲のパター ン認識から推定する次のような手法がある。 熱帯低気圧(台風を含む)については、CI数と呼ばれる台風強度指数を推定する手法(Dvorak法)が確立されている(Dvorak、1984)。この手法は各国で現業的に用いられている。推定された CI数と最大風速の対応表により最大風速が推定される。

中・高緯度の低気圧についても、低気圧の発達を 通常型、コンマ型、インスタントオクルージョン型 に分類(気象衛星センター、2000)した時の通常型の 低気圧については、中心気圧を見積もる SMB 法

(Smigielski・Mogil, 1992) がある。隈部ら(1996) は、日本の東海上で通常型の発達をした低気圧に SMB 法を適用した。また、隈部・神代(1997) は日 本の東海上で発達するコンマ型の低気圧について、 中心気圧と気圧傾度を見積もる方法を提案した。

ただし、これらの手法は陸地の影響を受ける低気 圧については調査されていない。経験的には、これ らの手法を陸地の影響を受ける中国大陸沿岸から日 本周辺に適用するには、困難な場合が多い。

5.1.3 雲の特徴からの推定

対流雲列、下層渦及び筋状雲などの規模の小さい 雲の特徴から、前項の場合より詳細に地上風を推定 できることがある。そのような雲の特徴について 5.2 節と 5.3 節で述べる。

なお、Cb に関連して発生した竜巻とガストフロン ト及び Cb 発生の引き金になった海風前線の例につ いては 3.3.4 項で述べた。また寒気場で発生する現象 については第6章で述べる。

5.2 寒冷前線(対流雲列)

5.2.1 活発な対流雲列に伴う風の急変

図 5-2-1 に示したアナ型寒冷前線(後方傾斜上昇型)のモデルでは、地上寒冷前線に沿って狭い寒冷 前線レインバンドがあり、風向の急変を伴う。狭い 寒冷前線レインバンドは、衛星画像では対流雲列と して観測される。

2000 年 3 月 16 日の実例を図 5-2-2 に示す。 雲バン ドA-Aの南縁に沿って対流雲列 a-a がある。 a-a には TBB の低い(赤外画像で輝度の高い)部分、す なわち発達した対流雲(Cg や Cb)が含まれている。 レーダーでは、a-a に線状の強いエコーが対応して いる。

那覇アメダスの時系列では、a-aの通過に伴って、

*伊藤 秀喜

風向の急変、約4℃の気温低 下及び通過時以降に弱い降 水を観測している(南西諸島 の一部では20~30mm/hの降 水があった)。このように、 寒冷前線に伴う対流雲列は、 風向の急変の指標となる。

次項で述べるように対流 雲列の移動速度が、その通過 後の風速の目安になる場合 がある。この事例の場合、a ーaが那覇を通過する時の移 動速度は南南東約 11m/s、a ーa通過直後の那覇の風は北 北西 8~9m/s であった(a-a の移動速度の7~8割)。

図 5-2-1 後方傾斜上昇型のアナ型寒冷前線に伴う雲と降水の理想化した断面図 (Matejka *et al.*, 1980) 北畠ら(1995)から引用.

(a) 赤外画像

5.2.2 ロープクラウドに伴う風の急変

次頁の図 5-2-4 (a)、(b) の衛星画像に a'-a'で示 したような、細くて長い Cu ラインを、その形状か らロープクラウド (Rope cloud) と呼ぶ。この場合に は、その長さは 1,000km 程度であるが、2,000~ 3,000km にも及ぶものもある。日本付近では、主に 海上で前線性雲バンドの暖気側に沿い、寒冷前線に 対応することが多い。また、前線活動が弱まった時 によく見られる (気象衛星センター、2000)。

気象衛星センター(1983)は、3時間毎の地上観 測と6時間ごとの高層観測データによる解析から、 ロープクラウドの通過には地上風の風向変化及び 800hPaより下層の温位と風向の変化などが対応し、 ロープクラウドが地上前線の位置であるとした。

米国のロープクラウドを伴った強い寒冷前線の詳
 細な解析では、以下のことが示されている(Seitter・
 Muench (1985)、Shapiro *et al.* (1985))。

- 移動や構造は重力流的であり、アーククラウド や狭い寒冷前線性のレインバンドの観測と著しく 類似している(重力流とアーククラウドについて は 3.3.4 (2)参照)。
- ② この雲の通過時に風向の急変がある。
- ③ Cb や大規模なメソ対流システムに発達することがある(彼らは、これらを誘発するメカニズムとして前線の微細構造に着目している)。

④ 前線の通過直後における下層平均風の前線に直 交する成分より、重力流(前線)の伝播速度(移 動速度)が速い。

ロープクラウドを伴った寒冷前線の観測例を図 5-2-3 に示す。前線の先端では風の急変(数分間で風 向が大きく変わる)と強い上昇流がある。衛星画像 では、そこにロープクラウドが形成されている(図 略)。

重力流の理論や実験によると、重力流の伝播速度 は、(密度差×寒気層の厚さ)¹²におおよそ比例する。 すなわち密度差(気温差)及び寒気層の厚さが大き いほど重力流の伝播速度が大きい。また続流(P123 の図 3-3-32 中の「冷気」右側の矢印)の流速は重力 流の伝播速度のおおよそ1.15 倍である(新野、1998)。

以上のことから、重力流的であるロープクラウド や狭い寒冷前線レインバンドに対応する対流雲列は、 風向急変の指標になるとともに、その移動速度は寒 気側の風速の目安になると考えられる。

ロープクラウドの中には、不明瞭化しながらもし ばらく持続する場合や、複数のロープクラウドが接 近してみられることがある。Bader et al. (1995) は、 組織的な前線性雲バンドに関係しない複数のロープ クラウドを示し、これらは地上における気団の差異 の名残であるとしている。

図 5-2-3 ロープクラウドを伴った寒冷前線通過時の観測(Shapiro et al. (1985))
 左図:実線は温位(K)、矢羽は前線通過前後の風を示す.
 右図:太実線は前線、数値は鉛直流(m/s)を示す.

(1) 典型的なロープクラウド

日本付近で見られるロープクラウドは、前項でも 述べたように寒冷前線や停滞前線に対応する雲バン ドが衰弱していく時に、その南縁に沿って現れるこ とが多い。その典型的な事例を以下に示す。この事 例は、寒冷前線に対応する活発な対流雲列がロープ クラウドに変化した例でもある。

図 5-2-4 の衛星画像は、図 5-2-2 から 6 時間後の画 像である。6 時間前の画像に比べ、雲バンド A-A は赤外画像で輝度が減少(雲頂温度が上昇)し、隙 間も見える。これらは A-A が衰弱していることを 示す。対流雲列 a'-a'-a の南西部分 a'-a'は、赤外 画像で輝度が減少するとともに、可視画像では細く て長い Cu ライン、すなわち明瞭なロープクラウド となった。 a'-a'は、16 日 06UTC 頃に南大東島を通過した。 南大東島アメダスの時系列(図 5-2-4 (d))では、ロ ープクラウドの通過に伴い、風向の急変と気温の急 下降がある。この変化は、活発な対流雲列(狭い寒 冷前線レインバンド)が通過した那覇の変化(図 5-2-2 (d))とほぼ同じである。ただし、気温低下量 がやや小さく、通過直後の風速もやや弱い。

南大東島を通過した時の a'-a'の移動速度と、通 過後の南大東島の地上風を比較すると、前者は南東 約 8m/s、後者は北西 5~6m/s であった。後者は前者 の 6~8 割程度である。地上風は周囲の地形など環境 に大きく影響を受けるので観測点どうしの比較は単 純にはできないが、この割合と活発な対流雲列が那 覇を通過した時の割合を比較すると両者はほぼ同じ であった。

(a) 赤外画像

(c) レーダーエコー
 (d) 南大東島アメダスの時系列
 図 5-2-4 2000 年 3 月 16 日 06UTC の衛星画像とレーダーエコー及び南大東島アメダスの時系列

(2)移動速度の遅いロープクラウド

移動速度の遅いロープクラウドの事例を示す。こ の例は、台風から変わった温帯低気圧の南西側に形 成された Cb ラインの衰弱とともに現れた例でもあ る。図 5-2-5 にロープクラウドが通過した南大東島 アメダスの時系列及び高層観測データを、図 5-2-6 に衛星画像を示す。

図 5-2-6 (a) の時刻(1日 22UTC)には、九州地 方南部に低気圧がある。この低気圧は、台風第 20 号 が東シナ海で温帯低気圧に変わり、北北東進したも のである。低気圧の南西側には Cb ライン A-A が形 成されている。

8 時間後の2日06UTCの画像(図5-2-6(b)、(c)) では、A-Aは弱まり、明瞭なロープクラウド(aa)となった。a-aは09UTC頃に南大東島を通過し、 12UTCには東海上に進んだ。

南大東島のアメダス(図 5-2-5 (a))では、ロープ クラウドの通過時に風向が急変した。ただし風速は 弱く、気温の変化も小さい。通過時に弱い降水があ った。

図 5-2-5 (b) は、ロープクラウドが通過した約 3 時間後の南大東島の高層観測データである。地表付 近は弱い北西風であるが、925hPaでは南西風である。 下層の寒気は不明瞭である。

南大東島を通過する時のロープクラウドの移動速 度を動画で測定すると、東南東約 3m/s と遅かった。 通過直後の南大東島の風速は西北西 2~3m/s で、ロ ープクラウドの移動速度とほぼ同じ程度であった。 寒気側と暖気側の気温差(密度差)が小さくロー プクラウドの移動が遅いということは、定性的に重 力流の性質に一致する。また、遅い移動速度に寒気 側の弱い地上風速が対応している。

なお、衛星画像の動画では、東南東進するロープ クラウドに対し、これを横切って北上する Cu (一部 Cg まで発達した)がある (図 5-2-6 (d) の B)。こ れらの Cu は、寒気層の上の南風によって移動して いると見られる。このことは、定性的には、前線の 傾斜が緩やかなことを示していると見られるが、詳 細は不明である。

(3) 衰弱したロープクラウド、ロープクラウド上 での対流雲の発達

図 5-2-6 (f) は (e) の 12 時間後の可視画像であ る。a-a は不明瞭となり、その北西側でロープクラ ウド b-b が明瞭である。この b-b は、a-a の北西 側で新たに明瞭化したものである。b-b の明瞭化と 同時に、この北東側には組織的な Cb が形成された。

a-a や b-b は地上観測点を通過していないので
観測データは示せないが、前に述べた Bader *et al.*(1995)、や Seitter・Muench (1985) 及び Shapiro *et al.*(1985)を参考にすれば、この時点では、

- a-aは寒冷前線の名残である。
- 9 明瞭化した b-b 及びその北東側の組織的な Cb には寒冷前線が対応する。

図 5-2-5 南大東島のアメダス時系列及び南大東島の高層実況

③ この組織的な Cb は、前線(重力流)前面の強い上昇流に誘発されて活発化したと見ることができる。なお、この Cb は、図 5-2-6 (b)、(d) 及び

(e) に見られる紀伊半島付近を東進した Cb が移 動したものではなく、2日 18UTC 頃から新たに発 達したものである。

(a) 1 日 22UTC の赤外画像

(c) 2 日 06UTC の可視画像

(e) 2日12UTCの赤外画像図 5-2-6 2000年11月1日~3日の衛星画像

(b) 2 日 06UTC の赤外画像

(d) 2 日 09UTC の赤外画像

(f) 3日 00UTC の可視画像

5.2.3 寒冷前線前面の南西強風

低気圧が日本付近を通過する時、寒冷前線の前面 でしばしば南寄りの強風になる。この南寄りの強風 は、下層の強風(下層ジェット)と密接に関連して いると考えられる。ただし、下層が強風であっても、 その下に滞留寒気がある場合のように、必ずしも地 上では強風にならない。

137ページの図4-3-4のアナ型寒冷前線のモデル図 では、下層ジェットが暖かいコンベヤベルト内の寒 冷前線のすぐ前面に位置する(Browning, 1990)。二 宮(1979)は、大規模低気圧に伴う暖域から前線の

図 5-2-7 1999 年 5 月 26 日 21UTC の赤外画像(左)と可視画像(右)

実線は等風速線(kt)

(b) B-B'に沿う RSM 断面図
 太実線:雲頂高度 実線:等風速線
 灰色実線:相当温位

図 5-2-8 1999 年 5 月 26 日 21UTC の赤外画像と RSM850hPa の風及び B-B' に沿う断面図

trailing portion (低気圧の南西側と思われる) にかけ て存在する下層ジェットについて次のように述べて いる。「下層ジェット、湿舌、豪雨 (rain band 的分布 をすることが多い)の同時的な発達は、豪雨を伴う 梅雨前線帯低気圧について、ほとんど例外なく見ら れる。この下層ジェットは強い非地衡風成分を持ち、 豪雨近傍に鋭く集中する。また梅雨前線帯の強風は、 ①大規模な準地衡風的な強風と②豪雨域近傍の鋭い 集中を示す(運動量の対流混合に関係する非地衡風 的な)中規模の強風との、2 種類の機構の重なりで ある。」 加藤 (2000) は、鹿児島豪雨についての数

値実験から、対流による加熱によって気圧の低下が 生じ、下層強風が作り出されるとしている。いずれ にしろ、寒冷前線の前面の下層に強風があり、対流 雲の発達とともにさらに強まると考えられる。

以下に寒冷前線に対応した Cb ラインのすぐ前面 で暴風となった例を示す。

1999年5月26日06UTCに東シナ海で発生した低 気圧は、発達しながら九州地方、瀬戸内海、北陸地 方、三陸沿岸を通り、27日12UTCには北海道太平 洋岸に進んだ。この低気圧の通過時に太平洋側の各 地で南寄りの強風が吹いた。特に大阪湾や紀伊水道 周辺では、40kt(約20m/s)を超える暴風となった。 関西空港では最大風速50kt(26日2051UTC)、最大 瞬間風速75kt(26日2026UTC)を記録した。この最 大瞬間風速は、関西空港の開港以来1位の記録と並 ぶ値である。

図 5-2-7 は大阪湾付近で最も風速の強かった 26 日 21UTC の赤外画像と可視画像である。A-A は寒冷 前線に対応した非常に活発な Cb ラインである。ま た、淡路島付近に長さの短い非常に活発な Cb ライ ン A'がある。A'は寒冷前線が地形の影響を受け、A -A と分離した形で発達したものと見られる。

図 5-2-8 に赤外画像と RSM の 850hPa の風を重ね たもの及び B-B'に沿った RSM 断面図を示す。これ らの図は、A'と A-A に沿った下層に強風(特に A' に沿っては 70kt を超える強風)、すなわち典型的な 下層ジェットがあることを示している。関西空港を 離発着した航空機の観測では、20UTC の高度 4,000 ~6,000ft(約 880~810hPa)で 90kt の風速であり(東・ 川田、1999)、RSM の風速よりさらに強い。

次に地上風について見る。 A' が通過した和歌山 のアメダスのデータ(図 5-2-9)は、この A' の接近 とともに南よりの風が強まったこと(20m/s 以上) と、通過後に弱風になったことを示している。

なお、東・川田(1999)は、この暴風の要因に大 阪湾周辺の地形効果があると指摘している。

このA-A及びAの通過に伴い九州地方南部、四 国地方、近畿地方の一部で1時間に 30mm 以上の降 水(和歌山では 50mm/h)があり、関西空港では強雨 により卓越視程が一時 100m まで低下した。

5.2.4 寒冷前線通過後の北西強風

冬季、強い寒気を伴った寒冷前線の通過後には、 しばしば北西の強風となる。ここでは、1999年2月 27日に本州で強風となった例を示す。この事例では、 対流雲列、筋状雲及び波状雲が明瞭である。これら の雲が地上風の目安になる事を示す。

図 5-2-10~14 に地上天気図、衛星画像及びアメダ ス時系列を示す。これらの図及び1時間毎の衛星画 像の動画から次のことがいえる。

 明瞭な対流雲列 A-A は日本海で形成され、本 州にかかり始めた 03UTC 以降は衰弱した。

② A-Aの北西側には明瞭な筋状雲 D がある。こ

れは、A-A の北西側に強い下層寒気が流入していることを示している。

筋状雲の領域の地上風速は 20kt (約 10m/s) 以 上といわれている (気象衛星課、1976)。D 付近の 雲を動画で追跡すると、ほぼ筋状雲の走向に沿っ て南東約 40kt (20m/s) で移動している。一般に下 層雲の移動速度は 850hPa 付近の高度の風に対応 する (Hamada, 1982)。

これらのことから、A-A の北西側には強い下 層寒気の流入と強い北西風が推定される。

③ 黄海には筋状雲 B がある。A-A の南側にも、 寒気に伴うと見られる対流雲 C がある。これらは A-A の前面にも下層寒気が流入していることを

(a) 1999年2月27日00UTC図 5-2-10 地上天気図

(b) 1999年2月27日06UTC

図 5-2-11 1999 年 2 月 27 日 00UTC の赤外画像(左)と可視画像(右)

(a) 27 日 01UTC の可視画像

(c) 27日06UTCの可視画像図 5-2-12 1999年2月27日の可視画像及び赤外画像

示唆している。Cの雲頂温度がDの雲頂温度より 高いことから、Cの領域の寒気はDの領域の寒気 より弱いと推測される。

④ A-A の移動を動画により測定すると、北側ほど速い。飛島付近では東南東約 40kt (20m/s)、相川付近では南東約 32kt (16m/s)、松江付近では南約 24kt (12m/s)である。

図 5-2-13 に示した日本海側の 3 地点について、 アメダスの時系列を図 5-2-14 左列に示した。この 図によると、A-A の通過に対応し明瞭な風向の 変化と気温の低下があり、気温の低下は北側の地 点ほど顕著である。また A-A 通過後の風速は北 側の地点ほど強い。

すなわち、A-A 通過後の気温降下量が大きい ほど(寒気が強いほど)、A-Aの移動速度が大き く、A-A通過後の地上風速も強い傾向にある。

(b) 27 日 03UTC の可視画像

(d) 27 日 09 UT C の赤外画像

図 5-2-13 27 日 02UTC の可視画像とアメダス風 アメダスは 10m/s 以上のみ表示 矢印は図 5-2-14 で使用する観測点.

⑤ 図 5-2-13 に示した太平洋側の3 地点について、 A-Aの日本海での移動を外挿した推定通過時刻 を図 5-2-14 右列に破線矢印で示した。この通過時 刻頃に3地点とも風速が強まっている。風向の変 化は明瞭な所と変化のない観測点がある。

⑥ 東北地方及び中部地方には波状雲が見られる
 (図 5-2-12 (b)、(c)の楕円の中)。東北地方の波状雲の波長は、02 UTC に約 16km、03UTC に約 20km、06UTC に 20~27km で、時間とともに長く

なる傾向にあった。中部地方の波状雲の波長は、 03UTC に約 16km、06UTC に 22km で、こちらも 時間とともに長くなる傾向にあった。

波状雲の波長は、中・下層の静的安定度や風速 などに依存する(P115 のコラム参照)。他の条件 が同じであれば、中・下層の風速が強いほど波長 は長くなる。中・下層の風速が強くても、必ずし

図 5-2-14 アメダスの時系列

各観測点の位置は 図 5-2-13 参照. 棒グラフ:雨量 矢印:図 5-2-12 の対流雲列 A-A の通過時刻 破線の矢印:A-A の日本海での移動を外挿した推定通過時刻. 風速のスケールが飛島だけ異なってい ることに注意.

も地上の風速が強いとは限らないが、この事例の 場合、波状雲がかかっていた石巻及び津では、そ の波長が長くなるとともに風速も強まる傾向が見 られる。

また、石巻では2時間程度の周期的な風速の変 動が見られ、津でも変動が比較的大きい。これら は、3.3節で述べた花巻空港の風速の周期的変動と 同じように、山岳波(風下波)に関連していると 考えられる。

5.3 下層渦

冬季、日本海にしばしば発生する下層渦について は第6章で述べる。ここでは、東シナ海で発生した 水平スケール 200km 程度の下層渦の例を示す。この 例では、RSM の予想と異なる風の変動があった。

図 5-3-1 は 1997 年 4 月 23 日 00UTC の地上天気図 である。千島列島の低気圧から関東南岸まで寒冷前 線が解析されている。関東南岸から南西諸島には寒 冷前線は解析されていないが、後で示すように、こ こにも弱い寒冷前線がある(ここではこれも寒冷前 線という)。一方 RSM では、この時刻には既に寒冷 前線が南西諸島を通過し、北寄りの風となる予想で あった(図略)。このことは、図 5-3-2 に示した那覇 空港における RSM の予想風の推移からも分かる。

図 5-3-3 は、6 時間毎の衛星画像にアメダスの風を 重ねたものである。この図を概観すると、雲バンド が東シナ海を南東進している。この雲バンドは下層 雲主体で不活発であること、この雲バンドの通過に 伴い北寄りの風となっていることから、大まかには 雲バンドに沿って弱い寒冷前線があると推定される。

以下、那覇空港に焦点を当てて、風の変化と衛星 画像の対応を見る。なお、図中のVは下層渦、Lは 下層雲列を示し、個々の下層渦や雲列は添え数字で 区別する。ただし、V3はV1又はV2が持続してい

図 5-3-1 1997 年 4 月 23 日 00UTC の地上天気図

るのか、それらとは別に新たに発生したものかは不 明である。

衛星画像とアメダスの風から、L1の東進とともに 北西風の領域が拡大しているのが分かる。那覇空港 でもL1が沖縄本島にかかった22日12UTC頃に北西 風となった。その後、V3の接近とともに23日00UTC 頃から弱風で風向が変動している。その後L4の通過 したと思われる23日12UTC頃から本格的な北東風 となった(L4 は赤外画像だけでは認識できない)。 このように、下層渦及びその周辺の下層雲列の接近 や通過に伴い、明らかに風向が変化している。

この事例について大城(1998)は、レーダーエコ ーと雲解析情報図を用い、下層渦や弧状エコーと風 の変化の対応を調べている。レーダーは短時間間隔 の観測ができること、一方、衛星画像は観測範囲が 広く、可視画像では下層渦や雲列の解析が容易なこ となど、それぞれの長所を活かした解析が有効と考 えられる。

なお、この事例では下層渦や雲列には次のような 特徴が見られた。

- 最も明瞭な下層渦 V3 は、その水平スケール 200km 程度、寿命は 1~2 日程度であった。
- ② V3 以外にも図示した下層渦や、図には示さないがもっと規模の小さい下層渦が見られた。また 22日 06UTC には、L1 上に屈曲や下層渦が約 100km間隔で見られた(この時刻の画像のみ、L1の矢印は屈曲や下層渦を示している)。これらの寿命は数時間から半日程度と短かった。これらによっても小さな風の変動が推測される。
- ③ 下層雲列上に下層渦が発生したり、逆に下層渦の周辺に下層雲列が明瞭化したりするのが見られた。

図 5-3-2 那覇空港の風の予想と実況

上から22日00UTC、22日12UTC、23日00UTC 初期値のRSM予想.最下段は実況. 大城(1998)の図から一部編集して転載.

図 5-3-3 (a) 1997 年 4 月 22 日の赤外画像(IR)と可視画像(VIS) 矢羽:アメダスの風(長い矢羽は 2m/s) V1~V3:下層渦 L1、L2:下層雲列

図 5-3-3 (b) 1997 年 4 月 23 日の赤外画像(IR)と可視画像(VIS) 矢羽:アメダスの風(長い矢羽は 2m/s) V3、V4:下層渦 L1~L4:下層雲列