

GK-2A Quantitative Precipitation Nowcast

Sukbum A. Hong¹, ByeongHwa Park², and Dongbin Shin¹ Department of Atmospheric Sciences, Yonsei University, Seoul, Korea¹ Department of Business Statistics, Hannam University, Daejeon, Korea²

1. INTRODUCTION

The quantitative precipitation nowcast (QPN) is one of the major products of GEO-KOMPSAT-2A (GK-2A), the Korea's second geostationary satellite. An extrapolation-based algorithm to predict the accumulated rainfall (or rainfall potential) and probability of rainfall from short lead times of 0-3 hours has been developed with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations as a proxy for the Advanced Meteorological Imager (AMI) flown on the GK-2A. The rainfall potential algorithm consists of two major steps: the identification of rainfall feature on the outputs from the GK-2A rainfall rate algorithm and the tracking of rainfall feature between two consecutive images. Then, the probability of rainfall algorithm uses the outputs from the GK-2A rainfall potential algorithm in order to estimate the probability of precipitation. The preliminary results of the algorithm and ongoing works are discussed.

2. DATASETS Value Description Name Rainfall Potential / Probability of Rainfall Meteosat9 SEVIRI Satellite **Spatial Resolution** 3 km **Geographic Coverage** Africa+ (~ 8000 x 10000 km²) **RR** algorithm GK-2A 2015v.1

Data Period

2012. 07. 19. 14:30 - 2012. 07. 19. 18:00

3. METHODOLOGY Extrapolation techniques using current and previous rainfall rate outputs Statistical error analysis Two Steps of Rainfall Potential Algorithm Three Equations of Probability of Rainfall Algo ✓ Feature Identification re Identification ✓ Threshold = 1mm/hr ✓ Smoothing filters = 11 x 11 Median & Average ✓ Rainfall Feature Size = 15 to 50 pix ✓ Eq.1: $PaR = \frac{\sum_{i=1}^{12} \alpha_i n_i}{12} \times 100\%$, where $\alpha_i = \frac{1}{\sigma_i^2 \sum_{i=1}^{12} \frac{1}{\sigma_i^2}} \& \sigma = \sqrt{\frac{1}{N} \sum (r_{obs} - rp_{for})^2}$ \checkmark Eq.2: PaR = ((n)₁₅+ σ_{15}) × 100%, where (n)₁₅ is the mean value of n within a 15 by 15 pixels box grid and σ_{15} is the standard deviation of the same box grid Feature Tracking $\begin{array}{l} & \text{recking} \\ & \text{Cross-correlation} = \frac{\sum_{k=1}^{n} (r_{pax} - r_{pax}) (r_{current} - r_{current})}{\left(\sum_{k=1}^{n} [(r_{pax} - r_{pax})^{-1} \int_{-\infty}^{\infty} |\Sigma_{k=1}^{n} [(r_{current} - r_{current})^{-1} + V_{current}] \right)} \\ & \text{Weighted motion vectors} \\ & \text{Post-processing (Kalman filter)} \end{array}$ ✓ Eq.3: PoR = 0% nge, accuracy, an Computing Time Measurement Range Measurement Precision Rainfall Potential 0 - 100 mm 5 mm 180 s Probability of Rainfall 0 - 100 % 25 % Fig. 1. Flowchart of the Rainfall Potential Algorithm 180 s Fig. 2 Flowchart of the Probability of Rainfall Algorithm

4. PRELIMINARY RESULTS

Fig 5. Probability of Rainfall

Scalar Accuracy Measures				Categorical Accuracy Measures			
	C.C.	Bias	RMSE		POD	FAR	HSS
3hr accumulated Rainfall Rates vs. Rainfall Potential	0.46	-0.04	1.35	3hr accumulated Rainfall Rates vs. Rainfall Potential	0.72	0.69	0.41
3hr accumulated Rainfall Rates vs. Probability of Rainfall	0.55	0.01	0.13	3hr accumulated Rainfall Rates vs. Probability of Rainfall	0.45	0.31	0.54

5. CONCULSION AND FUTURE WORK

The prototype algorithms of Rainfall Potential and Probability of Rainfall have been developed for the AMI on the GK-2A.

The results of prototype algorithms indicate overestimation of Rainfall Potential and underestimation of Probability of Rainfall.

We plan to improve the final version of algorithms by including:

✓ making adjustments for growth and decay of rainfall features

✓adding two different tracking strategies between shallow and not-shallow rainfall types. ✓ using Himawari-8 AHI (Advanced Himawari Imager) data as a proxy data.

6. REFERENCES

[1] Dixon, M., Wiener, G., 1993. TITAN: Thunderstorm identification, tracking, analysis and nowcasting-A radar-based methodology. American Meteorological Society. 10, 785-797.

[2] Johnson, J., Mackeen, P., Witt, A., Mitchell, E., Stumpf, G., Eilts, M., Thomas, K., 1998. The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm. Weather Forecast. 13, 263-276. [3] Lakshmanan, V., Rabin, R., DeBrunner, V., 2003. Multiscale storm identification and forecast. Atmospheric Research. 67, 367-380.

[4] Mecklenburg, S., Joss, J., Schmid, W., 2000. Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm. Journal of Hydrology. 239, 46-68.

[5] Wilks, D. S., 2011. Statistical methods in the atmospheric sciences, 3rd ed. Elsevier.

7. ACKNOWLEDGEMENTS

This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment" program funded by NMSC (National Meteorological Satellite Centre) of KMA(Korea Meteorological Administration).