GK-2A Quantitative Precipitation Nowcast

1. INTRODUCTION

The quantitative precipitation nowcast (QPN) is one of the major products of GEO-KOMPSAT-2A (GK-2A), the Korea's second geostationary satellite. An extrapolation-based algorithm to predict the accumulated rainfall (or rainfall potential) and probability of rainfall from short lead times of $\mathbf{0 - 3}$ hours has been developed with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations as a proxy for the Advanced Meteorological Imager (AMI) flown on the GK-2A. The rainfall potential algorithm consists of two major steps: the identification of rainfall feature on the outputs from the GK-2A rainfall rate algorithm and the tracking of rainfall feature between two consecutive images. Then, the probability of rainfall algorithm uses the outputs from the GK-2A rainfall potential algorithm in order to estimate the probability of precipitation. The preliminary results of the algorithm and ongoing works are discussed.

2. DATASETS

Description	Value
Name	Rainfall Potential / Probability of Rainfall
Satellite	Meteosat9 SEVIRI
Spatial Resolution	3 km
Geographic Coverage	Africa+ $\left(\sim 8000 \times 10000 \mathrm{~km}^{2}\right)$
RR algorithm	GK-2A 2015v.1
Data Period	2012. 07. 19. 14:30 $-2012.07 .19 .18: 00$

3. METHODOLOGY

$\frac{1}{\square}$

Fig. 1. Flowchart of the Rainfall Potential Algorithm
fall rate outputs - Extrapolation techniques using current and

- Two Steps of Rainfall Potential Algorithm Two Steps of Rainfall Pot
\checkmark Feature Identification \checkmark Feature Identification
$\quad \checkmark$ Threshold $=1 \mathrm{~mm} / \mathrm{h}$ Smoothing filters $=11 \times 11$ Median \& Average Rainfall Feature Size $=15$ to 50 pix
Feature Tracking
 \checkmark Weighted motion vectors $\sqrt{\sum_{i=1}^{n}\left[\left(r_{\text {past }} i-\bar{p}_{\text {past }}\right)^{2}\right] \sqrt{\sum_{t=1}^{n}\left[\left(r_{\text {rurrent } t} i-T_{\text {aurrent }}\right)^{2}\right.}}$ Weighted motion vectors
Post-processing (Kalman filter)
- Statistical error analysis

Three Equations of Probability of Rainfall Algorithm
\checkmark Eq.1: PoR $=\frac{\sum_{i=1}^{12} \alpha_{\alpha} n_{i}}{12} \times 100 \%$, where $\alpha_{i}=\frac{1}{\sigma_{i}^{2} \sum_{i=1}^{12} \frac{1}{\sigma_{T}^{2}}} \& \sigma=\sqrt{\frac{1}{N} \sum\left(r_{\text {obs }}-p_{\text {for }}\right)^{2}}$
Eq.2: $P_{o R}=\left((n\rangle_{15}+\sigma_{15}\right) \times 100 \%$, where $\langle n\rangle_{15}$ is the mean value of n within a 15 by 15 pixels box grid and σ_{15} is the standard deviation of the same box grid
\checkmark Eq.3: $P o R=0 \%$

	Requirement values for measurement range, accuracy, and time		
	Measurement Range	Measurement Precision	Computing Time
Rainfall Potential	$0-100 \mathrm{~mm}$	5 mm	180 s
Probability of Rainfall	$0-100 \%$	25%	180 s

Fig. 2 Flowchart of the Probability of Rainfall Algorithm

4. PRELTMINARY RESULTS

Fig. 3. 3hr Accumulated Rain rates

Fig. 4. Rainfall Potential

Fig 5. Probability of Rainfall

Scalar Accuracy Measures			
	C.C.	Bias	RMSE
3hr accumulated Rainfall Rates vs. Rainfall Potential	0.46	-0.04	1.35
3hr accumulated Rainfall Rates vs. Probability of Rainfall	0.55	0.01	0.13

Categorical Accuracy Measures			
	POD	FAR	HSS
3hr accumulated Rainfall Rates vs. Rainfall Potential	0.72	0.69	0.41
3hr accumulated Rainfall Rates vs. Probability of Rainfall	0.45	0.31	0.54

5. CONCULSION AND FUTURE WORK

The prototype algorithms of Rainfall Potential and Probability of Rainfall have been developed for the AMI on the GK-2A.

- The results of prototype algorithms indicate overestimation of Rainfall Potential and underestimation of Probability of Rainfall.

We plan to improve the final version of algorithms by including:
\checkmark making adjustments for growth and decay of rainfall features.
\checkmark adding two different tracking strategies between shallow and not-shallow rainfall types
\checkmark using Himawari-8 AHI (Advanced Himawari Imager) data as a proxy data.

6. REFERENCES

[1] Dixon, M., Wiener, G., 1993. TITAN: Thunderstorm identification, tracking, analysis and nowcasting-A radar-based methodology. American Meteorological Society. 10, 785-797
[2] Johnson, J., Mackeen, P., Witt, A., Mitchell, E., Stumpf, G., Eilts, M., Thomas, K., 1998. The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm. Weather Forecast. 13, 263-276.
[3] Lakshmanan, V., Rabin, R., DeBrunner, V., 2003. Multiscale storm identification and forecast. Atmospheric Research. 67, 367-380.
[4] Mecklenburg, S., Joss, J., Schmid, W., 2000. Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm. Journal of Hydrology. 239, 46-68. [5] Wilks, D. S., 2011. Statistical methods in the atmospheric sciences, $3^{\text {rd }}$ ed. Elsevier.
7. ACKNOWLEDGEMENTS

This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment" program funded by NMSC (National Meteorological Satellite Centre) of KMA(Korea Meteorological Administration).

