6th Asia-Oceania Meteorological Satellite Users' Conference

KMSC

THE REAL PROPERTY.

WorldBest 365

Application of RGB imagery to the Korean Peninsula

2015. 11. 09.

Park, Hye-Sook

National Meteorological Satellite Center(NMSC) Korea Meteorological Administration

하늘을 친구처럼, 국민을 하늘처럼

Contents

하늘을 친구처럼 국민을 하늘처럼

- Usage of channel images

Comparison of Next Generation Satellites

		Central Wavelength(µm)						
	채널	AMI (GK-2A)	ABI (GOES-R)	AHI (Himawari)	MI (COMS)	SEVIRI (MSG)	MODIS	
	1(VIS) blue	0.470	0.470	0.46			0.466 (B03)	٦
	2(VIS) green	0.511		0.51			0.554 (B04)	-RGB합성
	3(VIS) red	0.640	0.640	0.64	0.675	0.6	0.647 (B01)	
	4(NIR)	0.856	0.865	0.86		0.8	0.857 (B02)	-
Very thin cirrus cloud	5(NIR)	1.380	1.378				1.382 (B26)	
	6(NIR)	1.610	1.610	1.6		1.6	1.629 (B06)	
	NIR		2.250	2.3			2.114 (B07)	
	7(IR)	3.830	3.90	3.9	3.75	3.9	3.788 (B20)	
	8(WV)	6.241	6.185	6.2		6.2	6.765 (B27)	1
	9(WV)	6.952	6.95	7.0	6.75		6.765 (B27)	
	10(WV)	7.344	7.34	7.3		7.3	7.337 (B28)	vapor
SO2	11(IR)	8.592	8.50	8.6		8.7	8.529 (B29)	-
O ₃	12(IR)	9.625	9.61	9.6		9.7	9.734 (B30)	
	13(IR)	10.403	10.35	10.4	10.8	10.8	B30+B31]
	14(IR)	11.212	11.20	11.2			11.019 (B31)	Atmospheric
	15(IR)	12.364	12.30	12.3	12.0	12.0	12.032 (B32)	
CO ₂	16(IR)	13.31	13.30	13.3		13.4	13.365 (B33)	
ि Nationa	가기상위성센터 al Meteorological Satellite Center	GK-2A : GEC) KOMPSA	Г-2А(2018)				WorldBest 365

Responses of visible channels to surface condition

ABI FM1 (v08Sep2011) Visible SRFs & Various ASTER Reflectance Spectra

From "Moving from "versus" quantitative products to RGB "with" quantitative products "NOAA/NES DIS/S at ellite Applications and Research Advanced Satellite Products Branch (ASPB) Joleen Feltz CIMS S

Powerful Full Color image de la coloritade de la coloritada de la colorita

True Color RGB(Ch1+Ch.2+Ch3)

IR+VIS RGB

Himawari-8

2015 Aug. 4, 03:00UTC

Ch3(0.64) vs ch4(0.86) 하늘을 친구처럼 국민을 하늘처럼

Ch.4(0.86) vs Ch.6(1.6) 하늘을 친구처럼 국민을 하늘처럼

Ch. 5(1.6µm)

HIMA

2015/07/30 00:50UTC (2015/07/30/09:50KST) KMA

Not sensitive to dirt

Ch.3(0.64) vs Ch.5(1.6) **= 친구처럼 국민을 하늘처럼

Ch. 3(0.64µm)

Ch. 5(1.69µm)

Snow/ice Reflection channel

Snow/ice Absorption channel

2015 July 30, 00:50UTC

Ch.5(1.6) vs Ch.13(10.4) ^{か늘을 친구처럼} 국민을 하늘처럼

Ch. 5(1.69µm)

COMS Cloud product

Cloud phase(ice/water) information

COMS cloud phase image

2015 July 28, 02:00UTC

Ch. 7(3.9µm)

COMS Fog image

2015 July 30, 19:00UTC

국가기상위성센터 National Meteorological Satellite Center

WorldBest 365

Detection of fires

하늘을 친구처럼 국민을 하늘처럼

06:00UTC 3 Nov. 2015

3 Water Vapor channels Notes N

Himawari synthetic images from "A Correspondence Analysis of VIS and IR bands between MTSAT Imager and Himawari-8/9 AHI T.Kurino JMA/MSC

GOES Sounder Weighting Functions for 12UTC on 23-Oct-96

Image courtesy CIMSS (UW Madison)

Northern Hemisphere Winter at Satellite Nadir

NOAA/NESDIS

2015 July 30, 03:50UTC

Analysis of vertical water vapor distribution

True Color RGB

Mountain wave and Turbulence of the stand stand the stand st

- Near perpendicular flow to ridge line
- At least 25 knot wind speed at ridge top, normal to ridge, greater than 40 knots for severe turbulence
- Inversion positioned just above ridge top level- enhanced downslope winds

Mountain waves

하늘을 친구처럼 국민을 하늘처럼

2015 July. 31, 18:00UTC

Korea Meteorological Administration

Skew T - Log P DIAGRAM

OBS ANALYSIS

2015.07.30.09KST	2015.07.30.21KST
1000 hPa Air-mass Temp. 30.6 °C Humi. 51 % Wind. 255/026 KT	1000 hPa Air-mass Temp. 30.8 °C Humi. 55 % Wind. 130/004 KT
FL (gpm) 4787 850EQT (K) 337	FL (gpm) 4910 850EQT (K) 341
T/P (gpm) LCL (gpm) 1043 CCL (gpm) 1543 LFC (gpm) 1818 HEL (gpm) 12936 M/W (gpm)	T/P (gpm) LCL (gpm) 409 CCL (gpm) 1117 LFC (gpm) 1380 HEL (gpm) 13664 M/W (gpm)
SSI (850-500) 1.1 SSI (925-500) -0.0 SSI (925-700) 3.7 LI (000-500) -0.9 LI (925-500) -0.1 K-Index 25 TT-Index 44	SSI(850-500) -0.1 SSI(925-500) -1.2 SSI(925-700) 2.4 LI (000-500) -1.4 LI (925-500) -1.3 K-Index 28 TT-Index 45
SRH (m2/s2) 2 CAPE (m2/s2) 1513 CIN (m2/s2) 81 TPW(mm) 43.3[102%]	SRH (m2/s2) 156 CAPE (m2/s2) 1919 CIN (m2/s2) 140 TPW(mm) 42.1 [99%]
Cloud SKC Upper 449 6 Middle 515 4 Lower 800 7	Cloud BKN Upper 449 22 Middle 799 7 Lower 833 4
THCKN (10-7) 3069 CVT Temp. 35.7 Max Temp. 35.6 Min Temp. 24.0	THCKN (10-7) 3065 CVT Temp. 33.8 Max Temp. 34.0 Min Temp. 22.5

Contents

하늘을 친구처럼 국민을 하늘처럼

Usage of the Himawari-8 imagery

1

Several COMS RGB imagery

- Convective Cloud RGB
- WV RGB
- FOG RGB

Application of Himawari-8 RGB imagery

2-1. Recipe of Convective clouds CB

Red(IR2-IR1)

Blue(IR1)

100 105 110 115 120 125 130 135 140 145 150 155 160

	Used Channels(µm)	Threshold (K)
Red	IR2(12.0) – IR1(10.8)	-4~2
Green	WV(6.75) – IR1(10.8)	-20~15
Blue	IR1 (10.8)	200~310

35

Interpretation of Conv. Clds RGB

Meaning of Colors

Usage of Convective clouds RGB THE STATE

Analysis of Typhoon-Fitow(TY1323) & Danas(TY1224)

B/W VIS image

2013. 10. 6. 06:00UTC(daytime)

Usage of Convective clouds RGB Dipher RGB Di

Analysis of Typhoon-Fitow & Danas

B/W IR image

2013. 10. 6. 10:45UTC(nighttime)

Usage of Convective clouds RGB MENTER

Typhoon– Bolaven

0000UTC 27th Aug. ~ 2345 UTC 28th Aug. 2012

Application of Convective clouds - Heavy rainfall -500hPa Chart +WV image 6hr Accumulated rainfall

23.06:00-07.23.12:00 RAIN(dau) 2015.07.23 daily rainfall

- Synoptic condition : conversion zone between upper trough in the middle china and mT in the southwest ocean \rightarrow warm conveyer belt transport warm air in the Korea

Formation of cumulus(-1day

22nd July 2015 1300UTC 1400UTC 1500UTC 1600UTC

Cumulus merged as the cloud areas are extended \rightarrow formed the E-W line clouds and moving to the northward \rightarrow As the time passed, tapering cloud formed as the cloud extended to the downwind side(East)

COMS Convective RGB image :

- northward moving of tapering clouds
- continuous formation of new cells shown light green in front of the moving direction

하늘을 친구처럼 국민을 하늘처럼

COMS RGB Fog images → detect well the formation of Tapering clods 1 rainfall area is located in front(north)of the cloud moving direction, 2 high towering clouds extended to the leeward side(SouthEast)

Analysis of Cause → As the time passed, moving direction of cloud areas are coincided well with upper divergence region(200~300hPa) 국민을 하늘처럼

Analysis of Cause \rightarrow As the time passed, upper divergence region(200~300hPa) correspond well with lower convergence region at 850hPa and high humid region at 700hPa⁻¹²

365

Analysis of Cause \rightarrow On the other hand, as the low level Jet at the 850hPa moving northward new cells tend to formed in front of the local wind shear region

2-2. Recipe of Water Vapor RGB

VIS

Daytime (SZA <85 °)

	Channels (#)	Threshold
RED	VIS(0.675)	0~100
GREEN	WV(6.7)	210~255
BLUE	IR1(10.8)	210~320

2014.07.07.23:00UTC

Recipe of Water Vapor RGB(Night) = Me

SWIR

WV

IR1

Nighttime(SZA>85 °)

	Channels (#")	Threshold
RED	SWIR(3.75)	200~300
GREEN	WV(6.7)	210~255
Blue	IR1(10.8)	210~320

2014.07.07.13:00UTC

Interpretation of WV RGB(Daytine

Daytime

Meaning of Colors

COMS Water Vapor RGB ND ADD No ND ADD ND ADD NO ND ADD ND ADD

- Detection the low level clouds both day and nighttime
- Monitoring of the WV distribution in the middle/upper level atmosphere
- Detection of the well-developed high clouds shown white
- Discontinuity during the dawn/dusk

Nighttime (SWIR + WV + IR1)

Daytime (VIS + WV + IR1)

Discontinuity - solar zenith angle 85°

WV

WV RGB

0000UTC 30th July, 2014

Monitoring of Rapidly Developing Clouds 115 120 125 130 135 130

Red : VIS(Day) or SWIR(Night) Green : WV - IR1 Blue : IR1

하늘을 친구처럼 국민을 하늘처럼

국가기상위성센터 National Meteorological Satellite Center

하늘 국민

Before the Convective clouds

0145UTC 31st July, 2014

0

하늘 국민

Early stage of Convective clouds

0245UTC 31st July, 2014

하 국

0600UTC 31st July, 2014

2-3. Recipe of Fog RGB(Day)

Daytime (SZA <85 °)

	Channels (#11)	Threshold
RED	VIS(0.675)	0~50
GREEN	SWIR(3.7)	0~20
Blue	IR1(10.8)	250~300

2014.04.08.23:00UTC

Interpretation of WV RGB(Daytine

Daytime

Meaning of Colors

2014.05.22.00:00UTC

Recipe of Fog RGB(Night) THE NTHE AT A RECIPE OF FOG RGB(Night) THE AT A R

2014.04.08.17:45UTC

Interpretation of Fog RGB(Night)

Nighttime **Meaning of Colors High clouds** Fog **Thick High Could** Low cloud 2014.10.24.03:00 시정 km

2014.10.24.03:00UTC

1745UTC, 2nd Nov.~00:45UTC 3rd Nov. 2015

Comparison of Fog Product De North

>> Day << Red : VIS Green : SWIR Reflectance Blue : IR1

COMS RGB Product - Fog Analysis 2015.11.02, 18:00

>> Night << Red : IR1 - IR2 Green : SWIR - IR1 Blue : IR1 1800UTC 2nd Nov., 2015

6hr after

하늘을 친구처럼 국민을 하늘처럼

>> Day << Red : VIS Green : SWIR Reflectance Blue : IR1

COMS RGB Product - Fog Analysis 2015.11.03, 00:00

>> Night << Red : IR1 - IR2 Green : SWIR - IR1 Blue : IR1 00UTC 3rd Nov., 2015

ĐFS

C,

COMS Fog Products

하늘을 친구처럼 국민을 하늘처럼

DCD(dual Channel Difference) = TB(SWIR)-TB(IR1) < 0

COMS Fog Algorithm

하늘을 친구처럼 국민을 하늘처럼

Problem 1 of COMS Fog Production

◆ No detection of fog due to excessive screening of clouds

04UTC 26th Jan., 2015

◆ Investigate the effect of CSTB-TB by changing the surface temperature

Fog Area : surface temp. – TB(IR1) < 10K

- 1. Test 1: simulated maximum TB(IR1) for 15days during clear sky(CSTB)
- 2. Test 2: maximum SST and LST from COMS for 15days (CST)
- 3. Test 3 : surface Temp. estimated by KMA's NWP model(RDAPS)(NST)

하늘을 친구처럼 국민을 하늘처럼

COMS FOG

Result of fog tests

04UTC 26th Jan., 2015 Test 1: CSTB Test 3: NST Test 2: CST 0 0 0 0 O

65

Monthly Validation of Fog Test results

2015, 4, (Spring)

2015, 7, (Summer)

Improvement 1 of COMS Fog detection

Simplified the cloud screening method using the temp. difference between surface and fog area

Fog area : (CSTB – TB11) < 10

16UTC 25th Jan., 2015

WorldBest 365

Problem 2 of COMS Fog Production

• Insufficient detection of fog during the nighttime and dawn

2130UTC 20th Oct., 2015

AWS visibility vs (Xaxis) BTD3.7-11vs (Yaxis) CSTB-IR하늘을 친구처럼 국민을 하늘처럼

Analysis of ROC (Receiver Operating Characteristic) to find newsthreshold

Improvement 2 of Fog detection(Frontal Fog) = 하늘을 친구처럼

Visibility

COMS FOG(Old)

- Nighttime fog
- : -9.5<DCD(SWIR-IR) <-2.5

COMS FOG(New)

- Cloud screening using multi channels Cloud screening : CSTB IR < 10.
 - Nighttime fog :
 - : -9.5<DCD(SWIR-IR1)<-1.58

Improvement of Fog detection(Radiation Fog) 하늘처럼

COMS FOG(New)

CSTB – IR < 10. -9.5<DCD(SWIR-IR1)<-1.58

COMS FOG(Old)

0. < CSTB – IR < 10. -9.5<DCD(SWIR-IR1)<-2.5

LDAPS fog (NWP)

Improvement of Fog detection (Radiation Fog) 1500 UTC 1600UTC 1700UTC 1800UTC 1900UTC 2000UTC **COMS FOG(NEW)** 19th Oct. 2015 Surface visibility COMS FOG(OLD)

IDITUDEST 303

해들을 친구처럼 Improvement of Fog detection (Advection & Rachation *Fog)

Contents

하늘을 친구처럼 국민을 하늘처럼

Usage of the Himawari-8 imagery

Several COMS RGB imagery

Application of Himawari-8 RGB imagery to the Korean Peninsula

- True Color RGB
- Dust RGB
- Water Vapor RGB
- Day convective RGB

True Color RGB

0300UTC 3rd Oct. 2015

하늘을 친구처럼 국민을 하늘처럼

Change of Surface

- Vegetation
- Snow
- Sea ice etc.

True Color RGB-Convective Cloud Sand

Characteristics of convective clouds

Monitoring of Haze

20 Oct., 2015

하늘을 친구처럼 국민을 하늘처럼

Surface Condition

하늘을 친구처럼 국민을 하늘처럼

00UTC 21 OCT 2015 (09KST 21 OCT 2015)

Distribution of Max PM10 Density Densi

Aerosol Optical Thickness (COMS)

Application of Himawari Dust R

WorldBest 365

Comparison of other products

하늘을 친구처럼 국민을 하늘처럼

Yellow Sand Detection from COMS(AI)

하늘을 친구처럼

국민을 하늘처럼

Limitation of COMS AI products

하늘을 친구처럼 국민을 하늘처럼

Underestimation of Dust over the Ocean(WV effects)
decrease of BTD due to decrease of TB(12um) which absorbed by abundant WV

06:00UTC 31st March 2012

- Overestimation of Dust in the source region (surface heating)
 - increase of BTD due to surface heating

05:00UTC 24th March 2014

Yellow Sand Event(26th Oct. 2015)

하늘을 친구처럼 국민을 하늘처럼

DUST RGB(Himawari)

AI products(COMS)

00UTC 26th Oct. ~02UTC 27th Oct. 2015

Usage of Airmass RGB

6th July 2015 COMS(WV) Himawari(Airmass RGB) TY1510 LINPA Y1509 CHANHOM

00:00~01:30 UTC(15min)

High cloud(white)

00:00~01:30 UTC(10min)

하늘을 친구처럼

국민을 하늘처럼

Mid cloud(light yellow) tropical airmass(green)- warm air mass polar airmass(blue)-cold air mass Dry airmass (red)

WorldBest 365

Daytime Convective Strom RGB

하늘을 친구처럼 국민을 하늘처럼

145

150

0730UTC 11 Aug. 2015

2015.08.11, 07:30 (UTC)

WorldBest 365

0730UTC 11 Aug. 2015

_____2 3 5 7 10 15 20 25 30 35

하늘을 친구처럼

COMS WV RGB

120

Thank you

hspark@kma.go.kr http://nmsc.kma.go.kr

ALLAN A