Introduction to RGB Composited Imagery

Joachim Saalmüller

Jochen Kerkmann

With contributions from:
HP. Roesli (EUM), D. Rosenfeld (Israel), M. Setvak (CZ), M. König (EUM), G. Bridge (EUM), E. De Coning (RSA), J. Prieto (EUM), N. Moreira (Portugal), A. Eronn (Sweden), K. Kollath & M. Putsay (Hungary), H. Kocak (Turkey), J. Schipper (Netherlands), V. Nietosvaara (Finland), S. Gallino (Italy), M. Pavolonis (USA), T. Lee (USA)
Structure of the presentation

1) Why RGBs?
2) Initial guidance on creating RGBs
3) MSG: main improvements with a multispectral imager
4) RGBs for operational forecasting
5) Meteosat Third Generation (MTG)
PART 1:

WHY RGB PRODUCTS?
Why RGB Products?

• With dramatically increasing amount of imager data (MSG, H-8, GOES-R): need to package and consolidate information content into easy to use products

• RGB processing consolidates information from different spectral channels into single products that provide more information than any single image can provide
Multispectral view of tomatoes & clouds

Source: Prof. Daniel Rosenfeld
Evolution of RGBs

1990ies: simple RGBs from LEO satellites (e.g. AVHRR)
2000: True Colour + Natural Colour RGBs from MODIS
2002: Launch of MSG-1 with 12 channels
2003-2005: MSG Interpretation Guide
2007: First WMO workshop on RGBs
2012: Second WMO workshop on RGBs
2014 – 2015: Fine-tuning of RGBs for new instruments and for tropical regions
PART 2:

INITIAL GUIDANCE ON CREATING RGBs
Detection of aerosol, cloud, gas depends on contrast between the ‘target’ and the ‘background’.

Contrast can be:

1. Spectral (e.g. previous examples of dust and cirrus)
2. Texture
3. Time

(Steve Ackerman (Director CIMSS))
Example: Low Clouds & Power Station Plumes

MSG-1, 24-25 December 2006
24h- Microphysics RGB

Source: M. Setvak
RGB Production Process

Step 1: Determine the purpose of the product

Step 2: Select three appropriate channels or channel derivatives that provide useful information for the product

Step 3: Pre-process the images as needed to ensure that they provide or emphasize the most useful information

Step 4: Assign the three spectral channels or channel derivatives to the three RGB color components

Step 5: Review the product for appearance and effectiveness
Selection of the Appropriate Channels

Select three channels or channel differences that represent three different physical properties!!!

MSG Window Channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Main Cloud Physical Properties (clouds, NADIR viewing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 (VIS 0.6)</td>
<td>optical thickness, amount of cloud water and ice</td>
</tr>
<tr>
<td>02 (VIS 0.8)</td>
<td>optical thickness, amount of cloud water and ice</td>
</tr>
<tr>
<td>03 (NIR 1.6)</td>
<td>optical thickness, particle size & shape, phase</td>
</tr>
<tr>
<td>04 (MIR 3.9)</td>
<td>Day-time: top temperature, particle size & shape, phase</td>
</tr>
<tr>
<td></td>
<td>Night-time: top temperature (very noisy below -50°C)</td>
</tr>
<tr>
<td>07 (IR 8.7)</td>
<td>top temperature</td>
</tr>
<tr>
<td>09 (IR 10.8)</td>
<td>top temperature</td>
</tr>
<tr>
<td>10 (IR 12.0)</td>
<td>top temperature</td>
</tr>
</tbody>
</table>
Not Recommended RGB IR8.7, IR10.8, IR12.0

MSG-1, 21 January 2005, 12:00 UTC
Recommended RGB VIS0.8, IR3.9, IR10.8
PART 3:

MAIN IMPROVEMENTS WITH A MULTISPECTRAL IMAGER

From First to Second Generation

Meteosat
Meteosat First Generation (MFG)

Solar
2.5 km

Thermal
5.0 km

1=VIS0.6

2=WV6.2

3=IR10.8
Meteosat Second Generation (MSG)

Solar
3.0 km

1=VIS0.6
2=VIS0.8
3=NIR1.6

12=HRV

1.0 km

Thermal
3.0 km

4=IR3.9
5=WV6.2
6=WV7.3
7=IR8.7

8=IR9.7
9=IR10.8
10=IR12.0
11=IR13.4

17 November, 2015
Main Improvements with MSG

1. Day & Night Detection of Low Clouds
2. Cloud properties (phase, particle size, thickness)
3. Dust and Ash detection
4. Instability and moisture estimation
5. Vegetation monitoring
6. Fire detection
7. ...

Examples on the next slides ...
Do you see the thin Ci over France?
Do you see the thin Ci over France?
Where is the dust cloud?
Where is the dust cloud?
Where is the fog?
Where is the fog?
Do you see lee cloudiness (mountain waves)?
Do you see lee cloudiness (mountain waves)?
PART 4:

RGB PRODUCTS FOR OPERATIONAL FORECASTING
RGB Products and Applications

<table>
<thead>
<tr>
<th>RGB Composite</th>
<th>Applications</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RGB 24-h Micro</td>
<td>Dust, Clouds (thickness, phase), Fog, Ash, SO2, Low-level Humidity</td>
<td>Day & Night</td>
</tr>
<tr>
<td>2. RGB Airmass</td>
<td>Severe Cyclones, Jets, Potential Vorticity Analysis</td>
<td>Day & Night</td>
</tr>
<tr>
<td>3a. RGB Night Micro</td>
<td>Clouds, Fog, Contrails, Fires</td>
<td>Night</td>
</tr>
<tr>
<td>3b. RGB Day Micro</td>
<td>Clouds, Convection, Snow, Fog, Fires</td>
<td>Day</td>
</tr>
<tr>
<td>4. RGB Convection</td>
<td>Severe Convection</td>
<td>Day</td>
</tr>
<tr>
<td>5. RGB Snow-Fog</td>
<td>Snow, Fog</td>
<td>Day</td>
</tr>
<tr>
<td>6. RGB Natural Colour</td>
<td>Vegetation, Snow, Smoke, Dust, Fog</td>
<td>Day</td>
</tr>
</tbody>
</table>
Most important RGBs (for Operational Forecasting)

24-h Microphysics (Dust) RGB

28 January 2013, 12:00 UTC

Airmass RGB
1. RGB 24-hour Microphysics

\[R = \text{Difference IR12.0 - IR10.8} \]
* Optical Thickness, Tsurf-Tcloud

\[G = \text{Difference IR10.8 - IR8.7} \]
* Optical Thickness, Phase, Tsurf-Tcloud

\[B = \text{Channel IR10.8} \]
* Top Temperature

* Physical Interpretation (for dust/ash/water/ice clouds)
Applications:
Clouds, Contrails, Dust, Ash, SO2, Low-level Humidity

Area:
Full MSG Viewing Area (limb cooling)

Time:
Day and Night

Users:
most European & African NMSs, Middle East
1a. 24-hour Cloud Microphysics

devised by: Z. Charvat, HP. Roesli, J. Kerkmann, A. Eronn

Recommended Range and Enhancement:

<table>
<thead>
<tr>
<th>Beam</th>
<th>Channel</th>
<th>Range</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>IR12.0 - IR10.8</td>
<td>-4 … +2 K</td>
<td>1.0</td>
</tr>
<tr>
<td>Green</td>
<td>IR10.8 - IR8.7</td>
<td>0 … +6 K</td>
<td>1.2</td>
</tr>
<tr>
<td>Blue</td>
<td>IR10.8</td>
<td>+248 … +303 K</td>
<td>1.0</td>
</tr>
</tbody>
</table>

32 November, 2015
1b. 24-hour Dust Microphysics

devised by: D. Rosenfeld

Recommended Range and Enhancement:

<table>
<thead>
<tr>
<th>Beam</th>
<th>Channel</th>
<th>Range</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>IR12.0 - IR10.8</td>
<td>-4 ... +2 K</td>
<td>1.0</td>
</tr>
<tr>
<td>Green</td>
<td>IR10.8 - IR8.7</td>
<td>0 ... +15 K</td>
<td>2.5</td>
</tr>
<tr>
<td>Blue</td>
<td>IR10.8</td>
<td>+261 ... +289 K</td>
<td>1.0</td>
</tr>
</tbody>
</table>

33 November, 2015
1c. 24-hour Ash Microphysics

devised by: J. Kerkmann

Recommended Range and Enhancement:

<table>
<thead>
<tr>
<th>Beam</th>
<th>Channel</th>
<th>Range</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>IR12.0 - IR10.8</td>
<td>-4 ... +2 K</td>
<td>1.0</td>
</tr>
<tr>
<td>Green</td>
<td>IR10.8 - IR8.7</td>
<td>-4 ... +5 K</td>
<td>1.0</td>
</tr>
<tr>
<td>Blue</td>
<td>IR10.8</td>
<td>+243 ... +303 K</td>
<td>1.0</td>
</tr>
</tbody>
</table>
RGB
24-hour Dust
Microphysics
Global View

MSG-1
22 January 2004
12:00 UTC
Dust over China

Terra, MODIS, Dust RGB, 11 November 2010
Example: Volcanic Ash & SO2

MSG-1, 25 November 2005, 09:00 UTC
RGB 24-hour Dust Microphysics:

Interpretation of Colours for High-level Clouds

Cold, thick, high-level clouds

Thin Cirrus clouds / Contrails
over vegetated land / ocean
over sand desert

Ocean
Warm Desert
Cold Desert
Warm Land
Cold Land
RGB 24-hour Dust Microphysics:

Interpretation of Colours for Low/Mid-level Clouds

- Thick, mid-level cloud
- Thin, mid-level cloud
- Low-level cloud (cold atmosphere)
- Low-level cloud (warm atmosphere)
- Dust Cloud
- Ocean
- Warm Desert
- Cold Desert
- Warm Land
- Cold Land

Night
Day
2. RGB Airmass

\[R = \text{Difference WV6.2} - \text{WV7.3} \]
* moisture/temperature profile

\[G = \text{Difference IR9.7} - \text{IR10.8} \]
* Ozone content (O3-rich polar, O3-poor subtropical), Tsurf, Sat. Viewing

\[B = \text{Channel WV6.2} \]
* moisture/temperature profile

* Physical Interpretation (for cloud free situation)
2. RGB Airmass

devised by: J. Kerkmann

Applications: Rapid Cyclogenesis, PV Analysis, Deformation Zone & Jets

Area: Full MSG Viewing Area (limb cooling)

Time: Day and Night

Users: most European NMSs, South Africa, Oman, Israel, NOAA/NASA
2. RGB Airmass

devised by: J. Kerkmann

Recommended Range and Enhancement:

<table>
<thead>
<tr>
<th>Beam</th>
<th>Channel</th>
<th>Range</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>WV6.2 - WV7.3</td>
<td>-25 ... 0 K</td>
<td>1.0</td>
</tr>
<tr>
<td>Green</td>
<td>IR9.7 - IR10.8</td>
<td>-40 ... +5 K</td>
<td>1.0</td>
</tr>
<tr>
<td>Blue</td>
<td>WV6.2</td>
<td>+243 ... +208 K</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Note: warm airmasses seen at a high satellite viewing angle appear with a blueish colour (limb cooling effect)!

MSG-1
19 April 2005
10:00 UTC
RGB Airmass: Tropical Cyclone Chapala
RGB Airmass:

Interpretation of Colours

- Thick, high-level clouds
- Thick, mid-level clouds
- Thick, low-level clouds (warm airmass)
- Thick, low-level clouds (cold airmass)

- high PV...
- Cold Airmass
- Warm Airmass (High UTH)
- Warm Airmass (Low UTH)
Some words of caution on RGB use

Can different features have the same colour, making them hard to decipher?

Yes. Just think of the ambiguity between high clouds and snow cover on the natural colour RGB. It’s hard to distinguish them because they are both cyan.
Some words of caution on RGB use

How do RGB products differ from single colour enhancements and quantitative products?

An important difference to quantitative products is that RGB products are much easier to implement and they preserve the “natural look” of images by retaining original textures (no artifacts, no artificial jumps or boundaries). Also, spatial and temporal continuity allow for smooth animation of RGB product sequences (quantitative products are sometimes quite difficult to animate). Furthermore, quantitative products are often generated at a reduced (coarser) horizontal/temporal resolution, while RGB products are (should be) at full time/space resolution!
Example: Ash Clouds (15 April 2010)

Derived product overlaid on Ash RGB

Source: M. Pavolonis
Some words of caution on RGB use

What is the quality of RGB images?

The quality of RGB images is directly (one to one) linked to the quality of the level 1.5 input images. Users should therefore be aware of typical problems with single channel images. One example is the problem with IR3.9 and WV6.2 images during eclipse season, which affects the images around midnight. The straylight problem of these channels is directly reflected in the RGB images that make use of these channels, namely the Night Microphysics RGB (also called Fog RGB) and the Airmass RGB.
Training Example

Sun stray light (during eclipse)

2 September 2010, 00:00 UTC
PART 5:

METEOSAT THIRD GENERATION (MTG)

AOMSUC → Tuesday morning: Presentation on the Status of the EUMETSAT Satellite Programmes by Dr. Ken Holmlund
Meteosat Second Generation (MSG)

Solar
3.0 km

1=VIS0.6
2=VIS0.8
3=NIR1.6
12=HRV

1.0 km

Thermal
3.0 km

4=IR3.9
5=WV6.2
6=WV7.3
7=IR8.7
8=IR9.7
9=IR10.8
10=IR12.0
11=IR13.4
Meteosat Third Generation (MTG)

Solar
1.0 km

Thermal
2.0 km
FCI – Benefits from higher resolution

MTG FCI:

• Better spatial resolution
 i. Full Disk Scan: IR 2 km, VIS 1 km
 ii. Regional Scan: IR 1 km, VIS 0.5 km

• Better time resolution
 i. Full Disk Scan: 10 min
 ii. Regional Scan: 2.5 min
MSG: only one HRV channel @ 1 km sampling

Thunderstorm over Ouagadougou during satellite training course in 2007

Burkina Faso

5 April 2007, 14:00 UTC

Courtesy: H. Verschuur
MTG Improvements: 8 solar channels @ 1 km sampling

SEVERI (14:00 UTC) MODIS (13:25 UTC)

5 April 2007
Shallow river valley fog often not detected in MSG (too thin and too small area)

13 July 2014
The 0.91 µm channel will provide during daytime total column precipitable water especially over land surfaces.

- The 2.26 µm channel will provide the capability for an improved retrieval of cloud microphysics.

- The 0.444 µm and the 0.51 µm channels will support true colour images and permit surpassing current aerosol retrievals especially over land – also an important contribution to air quality monitoring.

- The 1.375 µm channel will improve detection of very thin cirrus clouds not seen by the current system. If not detected, errors are introduced in all clear sky products.

- The higher spatial resolution (1 km and 2 km) of the 3.8 µm channel will improve fire detection and, via its extended dynamical range (from 350 K to 450 K), the quality of products as Fire Radiative Energy (FRE) – a climate relevant product directly related to the CO₂ production of active fires.
The 0.91 µm channel will provide during daytime total column precipitable water especially over land surfaces.

The 2.26 µm channel will provide the capability for an improved retrieval of cloud microphysics.

The 0.444 µm and the 0.51 µm channels will support true colour images and permit surpassing current aerosol retrievals especially over land – also an important contribution to air quality monitoring.

The 1.375 µm channel will improve detection of very thin cirrus clouds not seen by the current system. If not detected, errors are introduced in all clear sky products.

The higher spatial resolution (1 km and 2 km) of the 3.8 µm channel will improve fire detection and, via its extended dynamical range (from 350 K to 450 K), the quality of products as Fire Radiative Energy (FRE) – a climate relevant product directly related to the CO$_2$ production of active fires.
The 0.91 µm channel will provide during daytime total column precipitable water especially over land surfaces.

The 2.26 µm channel will provide the capability for an improved retrieval of cloud microphysics.

The 0.444 µm and the 0.51 µm channels will support true colour images and permit surpassing current aerosol retrievals especially over land – also an important contribution to air quality monitoring.

The 1.375 µm channel will improve detection of very thin cirrus clouds not seen by the current system. If not detected, errors are introduced in all clear sky products.

The higher spatial resolution (1 km and 2 km) of the 3.8 µm channel will improve fire detection and, via its extended dynamical range (from 350 K to 450 K), the quality of products as Fire Radiative Energy (FRE) – a climate relevant product directly related to the CO₂ production of active fires.
MTG Improvements: smoke detection

SEVERI (11:00 UTC)

MODIS (09:35 UTC)

Smoke is transparent in IR!

More solar channels needed!

26 August 2007
The 0.91 µm channel will provide during daytime total column precipitable water especially over land surfaces.

The 2.26 µm channel will provide the capability for an improved retrieval of cloud microphysics.

The 0.444 µm and the 0.51 µm channels will support true colour images and permit surpassing current aerosol retrievals especially over land – also an important contribution to air quality monitoring.

The 1.375 µm channel will improve detection of very thin cirrus clouds not seen by the current system. If not detected, errors are introduced in all clear sky products.

The higher spatial resolution (1 km and 2 km) of the 3.8 µm channel will improve fire detection and, via its extended dynamical range (from 350 K to 450 K), the quality of products as Fire Radiative Energy (FRE) – a climate relevant product directly related to the CO₂ production of active fires.
NIR1.3: One Example

SEVIRI, Nat. Colour RGB

SEVIRI, Dust RGB

MODIS, NIR1.3 image, 23 May 2005, 11:00 UTC

courtesy D. Rosenfeld, Univ. Jerusalem
The 0.91 µm channel will provide during daytime total column precipitable water especially over land surfaces.

The 2.26 µm channel will provide the capability for an improved retrieval of cloud microphysics.

The 0.444 µm and the 0.51 µm channels will support true colour images and permit surpassing current aerosol retrievals especially over land – also an important contribution to air quality monitoring.

The 1.375 µm channel will improve detection of very thin cirrus clouds not seen by the current system. If not detected, errors are introduced in all clear sky products.

The higher spatial resolution (1 km and 2 km) of the 3.8 µm channel will improve fire detection and, via its extended dynamical range (from 350 K to 450 K), the quality of products as Fire Radiative Energy (FRE) – a climate relevant product directly related to the CO₂ production of active fires.
RGBs are...

- Generally made from three or more individual or differenced spectral channels; each is assigned to a primary color (red, green, or blue); the final product highlights atmospheric and surface features that are hard to distinguish with single channel images alone.
- Provide intuitive, realistic looking products that can reduce ambiguities and simplify interpretation.
- In some situations, different features can have the same color or the same feature can appear in different colors. One way to handle this is to animate the products.
- Can be overlaid with quantitative information, such as model data or other observational data, enabling more sophisticated analysis and interpretation.
- Are increasingly available online and in near real-time.
- Future satellite imagers will have increasing numbers of spectral channels, allowing for more RGBs and new applications.
RGBs on the Web (near real-time)

- SEVIRI RGBs: EUMETView (OGC Web Map Server)
- SEVIRI RGBs: EUM Real-time Images
- SEVIRI RGBs: Eumetrain ePort
- AHI RGBs: MSC of JMA
The Day Microphysics RGB (Red, Green, Blue) was inherited from Rosenfeld and Lensky (1998): the VIS0.8 reflectance in red approximates the cloud optical depth and amount of cloud water and ice; the IR3.9 solar reflectance in green is a qualitative measure for cloud particle size and phase, and the IR10.8 brightness temperature modulates the blue. This color scheme is useful for cloud analysis, convection, fog, snow, and fires. In this color scheme water clouds that do not precipitate appear white because cloud drops are small, whereas large drops that are typical to precipitating clouds appear pink, because of the low reflectance at IR3.9 manifested as low green. Supercooled water clouds appear more yellow, because the lower temperature that modulate the blue component. Cold and thick clouds with tops composed of large ice particles, e.g., Cb tops, appear red. Optically thick clouds with small ice particles near their tops appear orange.
Further Reading

- Eumetrain: Operational Use of RGBs
- Eumetrain: MSG Interpretation Guide
- Eumetrain: RGB Colour Interpretation Guide
- Comet: RGBs Explained
- EUMETSAT: Image Library
- EUMETSAT: Training Library
Thank you for your attention!

Feel free to contact our User Service Helpdesk at ops@eumetsat.int