ASSIMILATION EXPERIMENTS OF HIMAWARI RAPID-SCAN ATMOSPHERIC MOTION VECTORS

Otsuka, M., M. Kunii, H. Seko (Meteorolgical Research Institute), K. Shimoji (Meteorological Satellite Center)

Purpose of research

 Improve the accuracy of short-range forecasts of heavy rainfalls and other meso-scale severe weathers by utilizing high temporal and spatial resolution Himawari-8 data for assimilation

Heavy rainfall over the Kanto and the Tohoku region ($9^{\rm th}-11^{\rm th}$ Sep. 2015)

Levees broke along the Kinu River after torrential rain

http://www.tokyo-np.co.jp/article/national/ list/201509/CK2015091102000122.html

Rapid Scan Atmospheric Motion Vectors (RS-AMV)

- MTSAT-1R (Himawari-6)
 - 00 09 UTC 1st July 30th September
 - Derived from 5 min. RS observations
 - IR: Δ4 km, VIS: Δ1 km, 5 ch.
 - Positive impact on forecasts of a heavy rainfall (Otsuka et.al 2015)
- Himawari-8
 - Derived from 2.5 min. RS observations
 - 5 min. interval time for AMV retrieval
 - IR: Δ2 km, VIS: Δ0.5 km, 6 ch.

RS area by Himawari-8

Himawar-8 RS-AMV

AMV derived with improved algorithm

- Shimoji (2014)
 - New schemes for tracking and height assignment
 - Adapted for Himawari-8 high resolution observations
 - Enable to obtain high density meso-scale AMVs at a variety of heights

MTSAT-1R RS-AMVs obtained with the new algorithm (06:40 UTC 13th Jul. 2013).

Assimilation Experiments of MTSAT RS-AMV

Heavy rainfall caused by stationary front

- 15th 20th Aug. 2014
- Heavy rainfalls occurred nationwide especially in western Japan
- To see the overall impact of assimilation of RS-AMVs for the period

Data assimilation system and RS-AMV

- NHM-LETKF (Kunii 2014)
 - Δ15 km 50 layers, 50 members
 - 200 km/0.2 InP localization
 - 6-hour window, 1-hour time slot

RS-AMV

- 00- 09 UTC 15^{th} - 20th Aug. 2014

Domain for assimilation

- Derived from 5 min. MTSAT1-R RS with the new algorithm
- Super observation (Δ50 km •50 hPa)

Assimilation experiment

• CTRL

- observational data used for operational JMA meso-analysis

- TEST
 - MTSAT RS-AMVs besides the data used in CTRL
- Downscale forecasts by CTRL and TEST
 - $\Delta 5$ km, Initial time 06UTC, up to 9 hours
 - Compare rainfall forecast verification scores between CTRL and TEST

Forecast verification – threat score

- * Resolution for verification: 10km
- * Against JMA Radar/Raingauge-Analyzed Precipitation
- Slight improvement over the whole experiment period

Forecast verification-bias score

0.1

[mm/3hrs]

Averaged for six days

Assimilation Experiments of Himawari-8 RS-AMV

Heavy rainfall case for experiment

Case 1

- ≥ 31st Aug. 1st Sep. 2015
- Local heavy rainfall over Tsushima Island

Case 2

- ≥ 8th 10th Sep. 2015
- A band shaped precipitation system associated with two typhoons

2015/09/10 06:00 衛星B13 IR1

Case 1: Results -3-hour rainfall forecast

TEST: w Himawari-8 RS-AMV CTRL: w/o Himawari-8 RS-AMV

The track and the shape of intense rainfall area around Tsushima were better in TEST

Case 1: Results -hourly rainfall forecast

Forecast time : 07 – 09 hrs.

The track and the shape of intense rainfall area around Tsushima were better in TEST

Case 2 : DA experiment

Experiment	AMVs
CTRL	Operational AMVs from MTSAT-1R
TEST	High-reso AMVs from Himawari-8

NHM-LETKF specifications

Ensemble size	100
Grid size	409 x 331 x 50 (Δx = 10 km)
Covariance inflation	RTPS (Whitaker and Hamill 2012)
Covariance localization	200 km, 0.2 ln p
Analyzed variables	u, v, w, t, p, qv, qc, qr, qci, qs, qg
Observation data	MA CDA4 (u, v, t, rh, ps, tpw) + AMVs from MTSAT-1R or Himawari-8
Extended forecast	817 x 661 x 50 (Δx = 5 km), up to 48 hr

Domain for the DA experiment

Case 2: Forecast results

20150908 1200UTC 27-hour forecast (3-hour accumulated rainfall)

In the TEST experiment, predicted rainfall intensity over Tochigi Prefecture is weaker than the observation, but the location is considerably improved.

Summary and Future Plan

- The results of DA experiments suggested positive impact of RS-AMVs on forecasts of heavy rainfalls.
- To utilize RS-AMVs more effectively
 - Quality control
 - Optimal settings of observation errors, data thinning
 - Higher resolution assimilation experiments