

Seongmun Sim¹ · Seonghyeon Ha¹ · Junghee Lee¹ · Jungho Im1

¹ School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)

Contents

01. Introduction

02. Previous studies

03. Research content

1) Icing masking model based on COMS

2) Icing altitude estimation based on COMS

3) Icing masking model based on Himawari-8

04. Conclusion

INTRODUCTION

- Aviation accidents caused by icing

< source : 1990-2000 Aviation accident statistic >

January 27, 2009, at 4:37 a.m. CST, an ATR 42-320 (N902FX)

Airframe icing accident fatalities (1982-2000)

- 12% of the total weather accidents are caused by icing
- Fatal accidents occur every year
- ⇒ Critical issues for aviation safety

INTRODUCTION

- What is icing?

Super-Cooled Droplet (SCD) clouds

Super-Cooled Droplet (SCD) occurs under 0°C and stable condition.

When SCD collides on an object, SCD turns into

ice form, which is 'lcing'.

Natural phenomenon, but too dangerous.

→ Accurate observation and monitoring are required

INTRODUCTION

- GEO-KOMPSAT-2 (GK-2A)

UNIT UNIT UNIT

PREVIOUS STUDIES

- Current Icing Product/Forecast Icing Product (CIP/FIP)

CIP/FIP operating map

& heights

UNIST STUD

PREVIOUS STUDIES

Communication, Ocean and Meteorological Satellite(COMS)

GOES - Imager			COMS – MI	
Band	Bandwidt	h, µm	Band	Bandwidth, µm
Vis	0.55-0.75		Vis	0.55-0.80
ShortWave	3.80 - 4.0	0	ShortWave	3.5-4.0
Moisture	6.50 - 7.0	0	WaterVapor	6.5-7.0
IR-1	10.20 - 1	1.20	IR-1	10.3-11.3
IR-2	11.50 - 12	2.50	IR-2	11.5-12.5
				E G L R R R R R R R R R R R R R R R R R R
Computation Sources		Contents		
Upper tropospheric humidity		Vapor amount in the upper troposphere		
Cloud analysis		Estimation of shapes & amount of clouds & characteristics of cloud particles		
Cloud top temperatures		Estimate the temperatures		

& heights at the cloud tops

AND GEOGRAFIA

PREVIOUS STUDIES

- Communication, Ocean and Meteorological Satellite(COMS)

RESEARCH CONTENT

1. GOAL OF RESEARCH

To develop icing detection models using COMS and Himawari-8 based on machine learning approaches

2. RESEARCH PROCESS

- Icing reference data
 - $\checkmark\,$ Relied only on the PIREPs data as reference
- Cloud-related variables are determined
 - $\checkmark\,$ L1B data, Cloud analysis data, and Upper atmospheric variables
- Machine learning approaches
 - Decision Trees(DT), Random Forest(RF), Support Vector Regression(SVR)

3. THREE ICING MODELS

- 1) Icing masking model using COMS data
- 2) Icing altitude estimation using COMS data
- 3) Icing masking model using Himawari-8 data

RESEARCH CONTENT

Machine Learning

Machine Learning is a sort of the artificial intelligence (AI). Machine learning develops a model that learns from and makes prediction of data

1) Icing masking model based on COMS

- Data and Methodology

- Reference dataset was prepared based on the PIREPs
 - Consisted of 22 icing sites and 169 non-icing sites acquired from PIREPs between 1 Apr 2011 and 5 Sep 2015
- Input variables from the Level-1b and Level-2 data

Level-1b	Level-2	
Visible	Cloud Optical Thickness; COT	a section of the sect
Shortwave Infrared (SWIR)	Cloud Top Temperature; CTT	
Water Vapor (WV)	Cloud Top Height; CTH	Excluded for training data
Infrared1 (IR1)	Upper Tropospheric Humidity; UTH	through the result of tests
Infrared2 (IR2)	Cloud Effective Radius; CER	1
BTD1 (SWIR - IR1)	Cloud Phase; CP	
BTD2 (IR1-IR2)		130

Non-icing

1) Icing masking model based on COMS

- Results

2) Icing altitude estimation based on COMS

- Data and Methodology

- Cloud Top Temperature (CTT), Cloud Top Pressure (CTP), Cloud Top Height (CTH), and Cloud Optical Thickness (COT) are related to the internal properties of clouds such as temperature and particles
- Distribution of cloud internal properties is related with the vertical icing potential
- Altitude of icing from the PIREPs as a dependent variable
- Input variables: L1B and CTT, CTP, CTH, and COT data
- Modeling approach: Support Vector Regression (SVR)

2) Icing altitude estimation based on COMS

- Result

Validation

3) Icing masking model based on Himawari-

- Himawari-8

< Himawari-8 AHI >

Channel	Centerwavelength[µm]	Bandwidth[µm]	Resolution[km]
1	0.4703	0.0407	1
2	0.5105	0.0308	1
3	0.6399	0.0817	0.5
4	0.8563	0.0345	1
5	1.6098	0.0409	2
6	2.257	0.0441	2
7	3.8848	0.2006	2
8	6.2383	0.8219	2
9	6.9395	0.4019	2
10	7.3471	0.1871	2
11	8.5905	0.3727	2
12	9.6347	0.3779	2
13	10.4029	0.4189	2
14	11.2432	0.6678	2
15	12.3828	0.9656	2
16	13.2844	0.5638	2

- Geostationary satellite of JMA, launched in October, 2014
- Provide data from July 2015
- Images of 16 channels are provided for weather observations and environmental mornitoring
- Spatial resolution ranges from 0.5km to 2km
- Temporal resolution ranges from 0.5min to 10min
- Has similar channel characteristics with GEO-KOMPSAT-2 (GK-2A), so it is good proxy data for GK-2A

	Observations per timeline	Time cycle [min]	Observations per day	
Full Disk	1	10	144	10
Japan Area	4	2.5	576	-
Target Area	4	2.5	576	
Landmark Area	20	0.5	2,880	
Landmark Area	20	0.5	2,880	

RIS UNIT AND GEOSA

3) Icing masking model based on Himawari-

- Data and Methodology
- Reference dataset
 - Consists of 2 icing sites and 7 non-icing sites acquired from PIREPs between 1 Jul 2015 and 31 Aug 2015
- Input variables: 16 channels from full disk images
- Very limited number of samples during 2 months

3) Icing masking model based on Himawari-8

- Result

CONCLUSION

- Icing masking model based on COMS by DT & RF approaches
 - Similar patterns by two models
 - Decision trees estimated icing more than random forest.
- Icing altitude model based on COMS by SVR approach
 - Errors are generally within ±300m vertically, which is the significant level of icing from PIREPs.
- Icing masking model based on Himawari-8 by DT & RF approaches
 - Similar patterns by two models
 - Much more icing areas were produced from Himawari-8 than COMS.
- Very limited amount of data based solely on PIREPs as reference
 - More PIREPs will be available in the future, but might not be sufficient for modeling
 - Will investigate if the CloudSat Icing Potential (CLIP) algorithm based on cloud type and vertical profile of temperature can be further improved to provide more reliable icing masks.

Thank you

Intelligent Remote sensing and geospatial Information Systems (IRIS)

School of Urban and Environmental Engineering Ulsan National Institute of Science and Technology, Ulsan, S. Korea

> UNIST-gil 50, Ulsan 689-798, Republic of Korea Tel : +82 52 217 2887 E-mail : iris-lab@unist.ac.kr

Intelligent Remote sensing and geospatial Information Systems