Retrieval of multilayer cloud physical and optical properties from infrared measurements

Hironobu Iwabuchi^{1*}, Yuka Tokoro¹, Masanori Saito¹, Nurfiena Sagita Putri¹, Shuichiro Katagiri¹, Miho Sekiguchi²

¹Graduate School of Science, Tohoku University ²Tokyo University of Marine Science and Technology

The Sixth Asia/Oceania Meteorological Satellite Users' Conference (AOMSUC) 9 – 13 November 2015, Tokyo/Japan

Introduction

- Multiband, frequent observations by the Himawari-8/AHI enable to study diurnal cycle of cloud system and cloud evolution during the lifetime
- For consistent retrieval of cloud-properties, we use a multiband cloud retrieval based on the optimal estimation method, which fits physics-based model simulations to the observation signals (e.g., lwabuchi et al., 2014)

R = 8-10, G = 12-13, B = 8

Cloud retrieval overview

Retrieval algorithm features

- Forward model
 - Rigorous radiative transfer solver (multi-layer, CKD,
 2-stream raditive transfer)
 - Ice particle optical models: Yang et al.'s (2013) ice database, Liu et al.'s (2015) two-habit model
- Simultaneous use of 8–10 TIR bands
 - Window bands and H_2O , CO_2 , and O_3 absorption bands

Measurement and model errors

Error covariance matrix

$$S_e = S_{e,noise} + S_{e,RTM} + S_{e,atm} + K_b S_b^* K_b^{\mathrm{T}}$$

- Measurement noise
- Error in radiative transfer modeling (CKD model and approximate solver)
- Errors in atmosphere (MERRA) data
- *Errors in background surface emissivity (e.g., ocean optical constants and wind velocity)
- *Cloud optical and physical model (e.g., cloud base pressure)

Inversion algorithm

From adjacent pixel or a priori

Typhoon "Maysak"

Maysak: 2015/3/28~4/5, Lifetime of 204 hours

10

1

0.1

2.0 <u>8</u>

1.8

1.6

1.4

COT

Cloud Water Path

Cloud Optical Thickness

100

10

1

0.1

60

50

10

40 (m¹) 30 HED 20 CEB (m

Cloud Top Height

16

14

12

10

6

nformation Content (bits)

Cloud Effective Radius

Cloud Phase

200 400 600 800 1000 1200 0

Information Content

Cloud-Top Height

Cloud Water Path

Cloud evolution studied using the cloud tracking

Brightness Temperature, Band 07 28 2015/04/01 00:00:00 UTC 25°N CER[µm] 300 20°N 280 260 20 15°N 240 Salution 240 Brightness 13.8 10°N CTH[km] 200 5°I 125°l 130°E 135°E 140°E 145°E 13.4Traget tracked by the Cross 0.7 **Correlation Method** COT -Target variable: Cloud-top hight

0.3

8 (hr)

4

(Timestep of 10 minutes)

-Using high quality retrievals (Total Retrieval Cost < 16, Relative Error < 100%) -Combining 3 successiv timesteps

Conclusions

- Simultaneous use of thermal IR bands enables to <u>better infer cloud-top of optically thin cloud</u>
 - The cloud retrieval performs well when
 COT=0.15–10 and CER=2–150 µm for ice cloud
- Frequent observations by the Himawari-8/AHI provide a new dimension to study cloud system evolution