

Towards GOES-R Launch: An Update on GOES-R Algorithm and Proving Ground Activities

Jaime Daniels¹ and Steve Goodman²

GOES-R AWG Program Manager, NOAA/NESDIS Center for Satellite Applications and Research¹

GOES-R Program Chief Scientist, NOAA/NESDIS²

Contributions from AWG Team Leads, members of the GOES-R AWG teams, GOES-R Proving Ground Satellite Liaisons

GOES-R Instruments and products

- Preparing for GOES-R: Highlight Activities of the:
 GOES-R Algorithm Working Group (AWG)
 Proving Ground (PG) Program
- Summary

Expectations for GOES-R

The GOES-R series will provide significant improvements in the detection and observation of meteorological phenomena that directly impact public safety, protection of property, and our Nation's economic health and prosperity

ABI

Visible & IR Imagery

GLM

Lightning Mapping

SEISS, SUVI, EXIS, Magnetometer

Space Weather Monitoring <u>Solar</u> Imaging

- Improves hurricane track & intensity forecasts
- Increases thunderstorm & tornado warning lead time
- ✓ Improves aviation flight route planning
- Data for long-term climate variability studies
- ✓ Low latency (30 sec ABI, 20 sec GLM)

- Improves solar flare warnings for communications and navigation disruptions
- More accurate monitoring of energetic particles responsible for radiation hazards to humans and spacecraft
- Better monitoring of Coronal Mass Ejections to improve geomagnetic storm forecasting

GOES-R Products

Baseline Products

Advanced Baseline Imager (ABI)

Aerosol Detection (Including Smoke and Dust) Aerosol Optical Depth (AOD) **Clear Sky Masks** Cloud and Moisture Imagery **Cloud Optical Depth Cloud Particle Size Distribution Cloud Top Height Cloud Top Phase Cloud Top Pressure Cloud Top Temperature Derived Motion Winds Derived Stability Indices** Downward Shortwave Radiation: Surface Fire/Hot Spot Characterization **Hurricane Intensity Estimation** Land Surface Temperature (Skin) Legacy Vertical Moisture Profile Legacy Vertical Temperature Profile Radiances Rainfall Rate/QPE **Reflected Shortwave Radiation: TOA** Sea Surface Temperature (Skin) Snow Cover **Total Precipitable Water** Volcanic Ash: Detection and Height

Geostationary Lightning Mapper (GLM)

Lightning Detection: Events, Groups & Flashes

Space Environment In-Situ Suite (SEISS)

Energetic Heavy Ions Magnetospheric Electrons & Protons: Low Energy Magnetospheric Electrons: Med & High Energy Magnetospheric Protons: Med & High Energy Solar and Galactic Protons

Magnetometer (MAG)

Geomagnetic Field

Extreme Ultraviolet and X-ray Irradiance Suite (EXIS)

Solar Flux: EUV Solar Flux: X-ray Irradiance

Solar Ultraviolet Imager (SUVI)

Solar EUV Imagery

Future Capabilities

Advanced Baseline Imager (ABI)

Absorbed Shortwave Radiation: Surface Aerosol Particle Size Aircraft Icing Threat **Cloud Ice Water Path** Cloud Layers/Heights **Cloud Liquid Water** Cloud Type **Convective Initiation** Currents Currents: Offshore Downward Longwave Radiation: Surface Enhanced "V"/Overshooting Top Detection Flood/Standing Water Ice Cover Low Cloud and Fog Ozone Total Probability of Rainfall **Rainfall Potential** Sea and Lake Ice: Age Sea and Lake Ice: Concentration Sea and Lake Ice: Motion Snow Depth (Over Plains) SO₂ Detection Surface Albedo Surface Emissivity **Tropopause Folding Turbulence Prediction** Upward Longwave Radiation: Surface Upward Longwave Radiation: TOA **Vegetation Fraction: Green Vegetation Index** Visibility

AOMSUC-6, Tokyo, Japan, Nov 9-13, 2015

GOES-R Baseline Products

Aerosol Detection (Smoke and Dust)

Cloud Top Pressure

Aerosol Optical

Depth

Cloud Top Temperature

Legacy Vertical Moisture Profile

Legacy Vertical Temperature Profile

Clear Sky Mask

Lightning Detection -

Events, Groups & Flashes

Derived Motion Winds

RainfallRate Quantitative Precipitation Estimation (QPE)

Cloud and Moisture Imagery

Cloud Top Height/Cloud Layer

Sea Surface

Temperature

(Skin)

Derived Stability Indices

Cloud Optical Depth

Hurricane Intensity Estimation

Cloud Particle Size Distribution

Cloud Top Phase

Fire/Hot Spot Characterization

Land Surface Temperature

Downward Shortwave Radiation (Surface)

Snow Cover

Volcanic Ash -Detection & Height

V Dete

Total Precipitable Water

http://www.goes-r.gov/products/baseline.html

Reflected Shortwave

Radiation (TOA)

GOES-R ABI and GLM Instruments

- New and enhanced capabilities
- New opportunities

Concerne and

GOES-R ABI Enhanced Capabilities Expected to Bring Improved Level-2 Products

DORR CALL AMOSPHERE CALL

- Higher Spectral Resolution
 - Can see and retrieve new phenomena
- Higher Spatial Resolution
 - Higher fidelity imagery and L2 products; information at smaller scales now observed
- Higher Temporal Resolution
 - Physical and dynamical processes are now captured; new information to exploit and be used by user community
- Improved Radiometrics
 - Translate to more accurate products
- Improved Navigation and Registration
 - More accurate products and improved utilization of them

All of these things contribute to one being able to observe and retrieve phenomenon not previously possible

GOES-14 provided very unique information and offers a glimpse into the possibilities that will be provided by the ABI on GOES-R.

GOES-R Geostationary Lightning Mapper (GLM)

Totally new capability in a geostationary orbit!!

- GLM will observe intra-cloud (IC) and cloud-to-ground (CG) lightning at storm scale resolution across most of the Western Hemisphere with low latency (< 20 sec)
- GLM data is processed into lightning data products (Events, Groups, Flashes) that are more easily utilized by users
- Exciting new applications for improving severe weather forecasting and lightning awareness/safety

GLM Mission Benefits

- Improved forecaster situational awareness and confidence resulting in more accurate severe storm warnings (improved lead time, reduced false alarms) to save lives and property
- Diagnosing convective storm structure and evolution
- Aviation and marine convective weather hazards
- Tropical cyclone intensity change
- Decadal changes of extreme weather thunderstorms/ lightning intensity and distribution
- Extends 17-yr TRMM LIS Climate Data Set for 2+ decades
- GLM data latency only 20 sec

Global flash rate from LIS/OTD (1995-2014)

Lightning Climatology

Hurricane Katrina

10

All Events, Colored by Time

Continuity of GOES Operational Satellite Program

Launch Date: October 2016

GOES: Geostationary Operational Environmental Satellite					
	On-orbit storage				
1111	Test & Checkout				
	Operational				
	Fuel-Limited Lifetime				

Preparing for GOES-R launch

- Contributions of the AWG, GOES-R Proving Ground, and GOES-R Risk Reduction programs
- Creation and use of proxy data
- Preparing the user community
- Future capabilities and applications
- Importance of Proving Ground demonstrations and training

GOES-R Algorithm Working Group

• <u>Mission:</u>

- To select, develop, test, validate, and demonstrate Level-2+ algorithms that meet the GOES-R F&PS requirements and provide them to the GOES-R Ground Segment.
- > Provide sustained life cycle validation and Level-2 product enhancements

• End-to-End Capabilities

- Instrument Trade Studies
- Proxy Dataset Development
- Algorithm Development and Testing
- Product Demonstration Systems
- Development of Cal/Val Tools
- Integrated Cal/Val Enterprise System
- Radiance and Product Validation
- Algorithm and application improvements
- User Readiness and Education

NOAA

GOES-R Proxy Data Sources

The AWG product teams use a variety of <u>available proxy data</u> for their <u>pre-launch</u> algorithm development and testing, case study analyses, and product assessment efforts...

GOES-R ABI Cloud and Moisture Imagery Daily Real-time End-to-End Testing (from NWP to AWIPS-2)

Simulated ABI, on model grids AWG / STAR / CIMSS

To NWS, remap, emulate ABI mode, released as PG blocks, sent over NOAA Port and into AWIPS-2, re-assembled.

Simulated GOES-R ABI Full Disk Imagery (Band 1) as displayed on a NWS AWIPS-2 Workstation

west east

Done in near real-time...

AWG GOES-R Simulated ABI Datasets

16 Simulated ABI Bands Visible (2) Near IR (4) IR (10)

As Displayed in AWIPS-2

Full Disk Central location (Test)

Cloud Products

Algorithm Highlights

- Cloud algorithms take advantage of the ABI's spectral, spatial, and temporal resolution; and good radiometrics
- ABI 7.3, 8.5, 11, 12 and 13.3µm channels are used to estimate cloud–top temperature, cloud emissivity, and cloud microphysical properties.
- Cloud-top height algorithm uses an *optimal estimation approach* that provides retrieval error estimates; provides multi-layer solutions
- Cloud pressure and height are computed using NWP forecast temperature profiles.
- Operational Applications
 - Aviation Terminal Aerodrome Forecasts (TAFs)
 - Severe storm nowcasting
 - Supplements Automated Surface Observing System (ASOS) with upper-level cloud information
 - Cloud initialization and cloud verification in NWP
 - Climate prediction
 - Height assignment of Derived Motion Winds

AOMSUC-6, Tokyo, Japan, Nov 9-13, 201

Cloud Products

Algorithm Highlights

- Cloud algorithms take advantage of the ABI's spectral, spatial, and temporal resolution; and good radiometrics
- ABI 7.3, 8.5, 11, 12 and 13.3µm channels are used to estimate cloud–top temperature, cloud emissivity, and cloud microphysical properties.
- Cloud-top height algorithm uses an *optimal estimation approach* that provides retrieval error estimates; provides multi-layer solutions
- Cloud pressure and height are computed using NWP forecast temperature profiles.
- Operational Applications
 - Aviation Terminal Aerodrome Forecasts (TAFs)
 - Severe storm nowcasting
 - Supplements Automated Surface Observing System (ASOS) with upper-level cloud information
 - Cloud initialization and cloud verification in NWP
 - Climate prediction
 - Height assignment of Derived Motion Winds

 Simulated ABI Band 14 (11um) Imager)
 10

 Image: Simulated ABI Band 14 (11um) Imager)
 10

 Imager

Andrew Heidinger (NESDIS/STAR/CIMSS) Mike Pavolonis (NESDIS/STAR/CIMSS)

AOMSUC-6, Tokyo, Japan, Nov 9-13, 202

Total Precipitable Water (TPW)

Algorithm Highlights

- 1D-variational physical retrieval algorithm that has heritage with MODIS and current operational GOES sounder physical retrieval algorithms
- Regression-based initial guess T/Q profiles
- Utilizes the 6.15, 7.0, 7.4, 8.5, 9.7, 10.35, 11.2,
 12.3, and 13.3 μm bands)
- Exploits recent improvements in fast clear-sky radiative transfer models

• Operational Nowcasting Applications

- Situational awareness for potential watch/warning scenarios for heavy rain and flash flooding
- "Atmospheric Rivers" originating from the Pacific Ocean, Gulf of Mexico return flow, Southwest US monsoon
- Future contributor to NESDIS' Blended TPW product

Tim Schmit (NESDIS/STAR/CIMSS)

Leveraging Himawari-8/AHI for GOES-R Readiness

- Himawari-8 was successfully launched October 7, 2014 and carries the AHI which is an almost identical instrument to the ABI
- Availability of AHI datasets brings an unprecedented opportunity to exercise the Level-2 algorithms developed for GOES-R
- NESDIS/STAR is routinely pulling full resolution AHI data (all bands) from JMA's Cloud Service and making it available to its Cooperative Institutes and other partners.
- GOES-R Algorithm Working Group (AWG) teams are working to test their product algorithms with AHI data
- Used in GOES-R Proving Ground Activities where users are exposed to real ABI-like data
- Special thanks to JMA for sharing data and collaborating with NOAA and NASA during their post launch checkout

Blue Marble, Himawari 8 True Color Composite 25-January-2015 02:30 UTC Steve Miller (CIRA) - GOES-R AWG Imagery Team

Volcanic Ash

Himawari-8 testing has been excellent for GOES-R risk reduction and readiness

- Determined best spectral channels to use; developed procedure for mitigating subpixel co-registration errors; exercised validation tools
- Real-time results showed enhanced capability to detect eruptions earlier

DATE:	2015-07-31
TIME:	01:30:00
Production Date and Time:	2015-07-31 02:01:32 UTC
PRIMARY INSTRUMENT:	Himawari-8 AHI

Possible Volcanic Cb

More details V

Basic Information			
/olcanic Region(s)	Melanesia and Australia		
Country/Countries	Papua New Guinea		
/olcanic Subregion(s)	Northeast of New Guinea		
/AAC Region(s) of Nearby /olcanoes	Darwin		
Mean Object Date/Time	2015-07-31 01:35:14UTC		
Radiative Center (Lat, Lon):	-4.080 °, 145.020 °		
Nearby Volcanoes (meeting alert	Manam (0.60 km)		
criteria):	Boisa (0.90 km)		
Frend in IR Brightness Femperature	-62.10 °C		
/ertical Growth Rate Time Interval	10 minutes		
/ertical Growth Rate Anomaly	11.60 number of stddev above mean		
Maximum Height [AMSL]	22.30 km; 73163 ft		
0th Percentile Height [AMSL]	18.80 km; 61680 ft		
Mean Tropopause Height [AMSL]	16.40 km; 53806 ft		
Show More 🛦	View all event imagery »		

w all event imagery 22

Cloud Mask (detection)

AHI 4-Level Cloud Mask

Spatial Resolution Impacts

- We see a <u>50% reduction in the probably</u> clear decisions
- Overall cloud fraction <u>decreases</u> and <u>more holes detected</u>
- MODIS-like resolution at AHI nadir in IR
- Example shows a nighttime animation (16Z 17Z) on May 3

clavrx_H08_20150503_1600.level2.hdf

Clear Water	Clear Land	Prob. Clear	Prob. Cloudy	Cloudy	Unknown

clavrx_mtsat-2_2015_123_1601.level2.hdf

H-8/AHI Winds

These winds were generated using 3 FD images separated by 10 minutes.

Good navigation/image registration

Over 50,000 AMVS were generated over the FD; ~ 4x increase from current GOES!

Expected to benefit NWP

High-Level 100-400 mb Mid-Level 400-700 mb Low-Level >700 mb

Himawari-8 AHI as a Proxy for the GOES-R ABI – Derived Motion Winds

- AHI data is the ideal ABI proxy data to perform pre-launch L2 algorithm testing and to assess L2 algorithm performance
- The AWG winds team began near real-time processing of H-8 AMVs on 8/12/2015 along with routine collocations with radiosonde observations. Work is ongoing to initiate routine collocations with aircraft wind observations.
- Exercised steps to read in L1b data for algorithm execution
- Exercised DMW validation tools
 - Visualization of DMW product over imagery
 - Collocation of DMW vs reference/ground truth wind observations (radiosondes, aircraft)
 - Computation of comparison statistics
- Will enable AWG teams to more precisely pin down the expected performance of the L2 products for both the baseline versions and most recent versions of the L2 algorithms

Jaime Daniels (NESDIS/STAR)

H-8/AHI SST

HIMAWARI-8 AHI 4/14/2015 1350 UTC

Coverage of H-8 SST is better than that of H-7 SST (Higher fraction of clear sky ocean with H-8/AHI

Alexander Ignatov (NESDIS/STAR)

Bias:

00:00

01Aug15

00:00

01Aug15

H-8 SST

00:00

01Jul15

00:00

01Jul15

H-8: ±0.2K H-7::±0.4K

Land Surface Temperature

H-8/AHI LST Product animation for date 2015.09.01 Cloud mask is not applied in this example. DORR TO AND ATMOSPHERE TO AND

Land Surface Temperature AHI/VIIRS

Currently validating the ABI LST algorithm by comparing H-8 LST product with the VIIRS LST product since we do not have in-situ measurements for the validation yet.

Working to acquire in-situ LST measurements through China Meteorological stations

Satellite Proving Grounds

GOES-R and JPSS partner with NOAA labs and testbeds Supports demonstration and utilization of new capabilities by the end users Facilitates the transition of GOES-R and JPSS research to applications Incorporates user feedback for product improvements

Hurricane Sandy-**GOES High Density Atmospheric Motion Vectors**

S-NPP Day/Night Band Ice Detection

NOAA Hazardous Weather Testbed (HWT)

THE EMERGENCE OF WEATHER-RELATED TEST BED INKING RESEARCH AND

The GOES-R Proving Ground

Aviation Weather Center (AWC) – Kansas City, MO IR Imagery of Oceanic Storms

Cooperative Institute for Meteorological Satellite Studies (CIMSS)/Center for Satellite Applications and Research (STAR) – Madison, WI Fog/Low Stratus Product

STAR/University of Maryland Baltimore County (UMBC) – College Park, MD Aerosol Optical Depth

Cooperative Institute for Research in the Atmosphere (CIRA)/STAR – Ft. Collins, CO ABI Synthetic Low Cloud Enhancement Imagery

Storm Prediction Center (SPC) – Norman, OK Severe Storms 1-Min Visible Imagery of Overshooting Tops

Short-term Prediction Research and Transition Center (SPORT)/NASA – Huntsville, AL GLM Lightning Density

National Hurricane Center (NHC) – Miami, FL RGB Air Mass for Hurricane Sandy

GOES-14 Super Rapid Scan Operations to Prepare for GOES-R (SRSOR)

GOES-14 SRSO provided unique data and offered a glimpse into the possibilities that will be provided by the ABI on GOES-R in one minute mesoscale imagery

DIA Tornadic Storm: 5/21/14

SRSOR for 2015 : May 18 - June 12, 2015 August 10 – 22, 2015 http://cimss.ssec.wisc.edu/goes/srsor2015/GOES-14_SRSOR.html SRSOR data for 2012, 2013, and 2014 also available Many case examples available; access to blogs

Current State of 1-minute Imagery User Readiness

Contributors: Michael Folmer, Amanda Terborg, Chad Gravelle, Andrea Schumacher, Mark DeMaria, Tim Schmit

William Line

University of Oklahoma - CIMMS NOAA/NWS/Storm Prediction Center, Norman, OK bill.line@noaa.gov 33

Preparing the users for super rapid scan imagery

Weather Forecast Offices **Aviation Weather Center National Hurricane Center Ocean Prediction Center** Weather Prediction Center **Storm Prediction Center**

Other

- G14 1-min imagery demonstrated in HWT during 2014 and 2015 Spring Experiments.
 - NSSL Experimental Warning Program (EWP) (AWIPS-II) Real-time experimental warning operations
 - 24 NWS Forecasters (22 WFO, 2 CWSU; all CONUS regions and AR)
 - 6 broadcast meteorologists "viewers would love seeing this"
 - 91 SRSOR Blog posts: <u>http://goesrhwt.blogspot.com/search/label/SRSOR</u>
 - Operated in 32 unique CWA's during SRSOR 2015
 - HWT Experimental Forecast Program (EFP) (N-AWIPS) Real-time experimental forecast/outlook
 - SPC, WFO forecasters, researchers

• <u>93% of days in 2015</u>, forecasters found that the 1-min data provided them with significant information not captured in the routine satellite imagery.

- Monitoring cu development/evolution, moist inflow, i.d. of OTs and collapsing tops, i.d. and tracking
 of boundaries and gravity waves, boundary interaction, identifying new updrafts near mature
 storms, rapid cooling in IR, shear, features/processes under mid-upper clouds ... all done quicker
 and with more confidence
- See future utility for fire weather plume tracking, outflow/dust storm tracking, low cloud movement (esp. aviation), sea/lake breeze
- 65% felt 1-min Overshooting Top overlay enhanced 1-min imagery

Forecaster Comments from the Hazardous Weather Testbed

- All Forecasters agreed:
 - 1-min satellite imagery NOT "overwhelming" at all
 - Will incorporate 1-min data into the warning process
 - There will be an operational use for it on most days in their CWA
 - What they most want to see in the GOES-R 1-min training are operational use examples from forecasters who experience with the data
 - Forecasters consider this base data (along with radar, lightning)

No AWIPS-II issues – forecasters loaded 100+ images alone or with OT, radar, lightning overlays

"I would love to have an Super Rapid Scan Satellite loop with reflectivity, and lightning somewhere on my D2D as a way to **stay grounded** with what is happening in real time during severe weather operations." – WFO Forecaster

Aviation Weather Center

- GOES-14 SRSOR available to AWC forecasters in N-AWIPS since 2012
- Available during 2013 and 2014 AWT experiments
 - Participants have included: AWC, CWSU, FAA ops, airlines, Air Force, aviation researchers
- Primary uses thus far have included:
 - Convective SIGMET desk: Utilized when diagnosing convection and issuing products
 - Area Forecast (FA) desk: Monitoring ceiling and visibility (watching fog banks) and turbulence markers
 - National Aviation Meteorologist (NAM) desk: monitoring convection, ceiling and visibility (especially on west coast)

8/21/13 - Convection over Minneapolis airspace

GOES-14 SRSOR in the Storm Prediction Center (SPC)

- "The one-minute imagery helped me to anticipate areas of new convective development as well, which was useful in developing short-term forecasts and mesoscale discussions for severe weather."
- "... having the data available routinely would very likely, over time, allow forecasters to gain a **better understanding** of processes related to convective initiation, as these processes occurring within a cu field would be visually revealed in high temporal -resolution data in a way that 15- or 30-minute imagery cannot as clearly depict."
- "In the pre-storm environment, these data were **especially helpful** in monitoring the vertical growth of cumulus convection and in the identification of boundaries."
- "I found it to **be very useful** in... Using cloud character and trends to diagnose boundary locations and motion, and nowcast their potential for either CI or influences on upshear storms to interact therewith."
- "This has provided **extra confidence and lead time** for the issuance of two mesoscale discussions compared to the normal satellite update frequency/latency. ... quite striking. It's analogous to the difference between watching high-def TVs vs. standard def, ... Satellite imagery at 1-min temporal resolution <u>needs to become the new standard for severe weather operations</u>."
- "Post-storm initiation, the high-resolution data allowed for **careful analysis** of overshooting and collapsing tops, the character of the storm anvils (ie. health of the storm) and the identification of convectively generated outflows."

http://satelliteliaisonblog.wordpress.com/category/spc/

Adapted from Dr. Heather Lazrus (SSWIM)

NWS Vision to Integrate ABI and GLM Products with Other Data and Models

A <u>Potential</u> Operational Example: Convective Initiation/Severe Wx How can we integrate the information in future tools?

Why NWS needs this?

Situational Awareness Warning confidence Decision Support (venues)

Situational Awareness:

User comment: 'Cloud Top Cooling product is an excellent source of enhancing the situational awareness for future convective initiation, particularly in rapid scan mode'.

> AWC Testbed forecaster (June 2012)

GOES-14 Rapid Refresh 1-min Imagery and Lightning

Derecho/Lightning/Tornado (June 13, 2013)

Source of Lightning Data:

DC Lightning Mapping Array (DCLMA)

Courtesy of Scott Rudlosky, CICS-MD The tracks and locations of two tornados (red lines/circles) are overlaid to highlight the important relationship between lightning activity and severe storms.

13 Jun 2013: 1845Z

Probabilistic Forecasting of Severe Convection through Data Fusion

- GOES-derived cloud growth rates, NEXRAD-derived products, and NWPderived fields are used as input into a Bayesian statistical model to compute the probability that a storm will first produce severe weather in the near-term
- Satellite and radar object-tracking are used to keep a history of storm development
- FY15-16 R3 project will investigate total lightning data and additional NWP sources, as well as advantages to be gained using super-rapid scan data
- The product display will complement NWS warning operations
- The product will be evaluated in testbeds and proving ground experiments

Merged radar reflectivity with model probability of severe contours. The highlighted storm had strong satellite growth rates, contributing to a high probability prior to severe hail occurrence. No warning was issued.

Help NWS forecasters skillfully increase warning lead time to severe hazards

M. Pavolonis (STAR/ASPB) and J. Cintineo (UW-CIMSS), J. Sieglaff (UW-CIMSS), D. Lindsey (STAR/RAMMB), D. Bikos (CSU-CIRA) 42

Probability of Severe Convection

NASA

GOES-R Launch and Post-Launch Testing

• GOES-R launch (October 2016)

- Launch and orbit raising: 12 days
- Level 1b products will be validated during Post Launch Test (six months) and will be available through GOES-R Rebroadcast (GRB) service as products are certified
- Level 2+ product certification begins after L1b products and will be distributed on a product-by-product basis as they mature
- GOES-16 extended validation: 6 months beyond initial 6 month checkout period
- GOES-16 operational: Launch + 1 year at a TBD orbit location

GOES-R at Checkout Location 89.5° West

150

30

Road to Launch

- Continue efforts to generate, demonstrate, and validate L2 products using Himawari-8/AHI data
- Complete refinements to L2 product validation tools needed for the Post Launch Test (PLT) period and for long-term monitoring
- Participate in GOES-R Program-led rehearsal exercises that test data flows, product generation, product monitoring and validation tools, and more
- Continue user engagement and readiness activities
- Learning and working with the new GOES-R core ground system and L2 product algorithm software
- Test process to transition L2 algorithm updates into the operational system

- GOES-R is coming Launch October 2016
- New sensors, products, and services will help improve forecasts and increase lead times for warnings and decision makers
- Presents Challenges and Opportunities for model assimilation, data fusion and tools
- User preparation is essential to take advantage of the advanced capabilities to support a Weather Ready Nation -Hemisphere - World

Geostationary Operational Environmental Satellite - R Series

Thank you!

For more information visit www.goes-r.gov

CONNECT WITH US !

www.facebook.com/ GOESRsatellite

The next-generation of geostationary environmental satellites

Advanced imaging for accurate forecasts

Real-time mapping of lightning activity

Improved monitoring of solar activity

https://www.youtube.com/user/ NOAASatellites

https://twitter.com/NOAASatellites

https://www.flickr.com/photos/ noaasatellites/

Spacecraft image courtesy of Lockheed Martin