## Multispectral Application Development for Himawari-8 AHI

Steven D. Miller<sup>1</sup>, Curtis Seaman<sup>1</sup>, Dan Lindsey<sup>2</sup>, Tim Schmit<sup>3</sup>, Mat Gunshor<sup>4</sup>, Don Hillger<sup>2</sup>, and Yasuhiko Sumida<sup>5</sup>

> 6<sup>th</sup> Asia/Oceania Meteorological Satellite User's Conference Session 2: Himawari-8, related status and application S02-4

> > Tuesday 10 November 2015









# Outline

- Background—NOAA's GOES-R Proving Ground (PG)
- Selected PG applications from Suomi-NPP VIIRS
- Transitioning to AHI:
  - Selected AHI RGB Applications
  - True Color and "Hybrid Green"
  - GeoColor Blended Imagery
  - Lofted Dust
- Conclusions



NASA ATS-3 (1967) The last geostationary satellite to offer a true color imaging capability.

#### NOAA's GOES-R Proving Ground

#### Vision:

• Bridge the gap between researchers and forecasters

#### **Objectives:**

- Day-1 readiness and maximum utilization of the GOES-R observing system
- A conduit for research satellite products to be hosted on operational display systems

#### Approach:

- Use proxy data to anticipate future GOES-R Advanced Baseline Imager capabilities
- Demonstrate ABI-caliber products/techniques in the operational environment
- Engage in 2-way dialogue to enable research-tooperations-to-research (R2O2R) development





#### Himawari-8 AHI provides closest proxy to GOES-R ABI

#### Proving Ground Demonstrations: MODIS/VIIRS Cloud/Snow



#### Proving Ground Demonstrations: MODIS/VIIRS Blue-Light Dust



#### Proving Ground Applications: MSG 'DEBRA' Dust Mask



## AHI Airmass RGB (EUMETSAT)



A frontal system passes over Japan 0000-0750 UTC 2 November 2015

Band 8 (6.2 μm) BLUE Band 12-13 (9.6 - 10.3 μm) GREEN Band 8-10 (6.2 – 7.3 μm) RED

- Colors are dependent on temperature, water vapor and ozone
- Warm, moist (tropical): green
- Warm, dry: orange
- Cold, dry (polar): purple
- Cold, moist: blue
- Low tropopause height/strong subsidence: red
- Warm land surface: **black**
- Cold clouds: white

#### **AHI Fire Temperature RGB**



Bush land fires detected in Australia 2340-0800 UTC 11 October 2015

Band 5 (1.6 μm) BLUE Band 6 (2.3 μm) GREEN Band 7 (3.9 μm) RED

- Relatively cool/small fires only detected at 3.9 µm appear red
- Warmer/larger fires detected in both 3.9 μm and 2.25 μm appear yellow
- Very large/hot fires detected in all three bands and appear white
- Liquid clouds: blue
- Ice clouds: dark green

## AHI True Color: Rayleigh Corrections

- Molecular scatter of sunlight by the gaseous atmosphere is significant, particularly in the blue-band
- Adapted atmospheric correction software, applied previously to SeaWiFS/MODIS/VIIRS sensors, to AHI bands
- Corrections are a function of solar & satellite geometry



→ These atmospheric corrections are a critical step in attaining high-quality true color imagery



## Inconsistency with MODIS/VIIRS



 Comparisons of AHI true color imagery to VIIRS & MODIS showed vegetation too brown, deserts too red



 The 510 nm AHI band misses the 555 nm chlorophyll signal, and mineral soils are more absorbing.(MODIS/VIIRS both use 555 nm)

## Proposing a 'Hybrid Green' Band

- Blend 510 nm green band with vegetation-sensitive 856 nm band to produce a 'hybrid green' band (G<sub>H</sub>):
- $G_{H} = F * R_{510} + (1-F) * R_{856}$ ~ 0.93 (experimental)
- Provides enhancement to green vegetation and mineral soils (e.g., deserts).
- Minimal impact to other features of the scene (clouds, ocean, and shallowwater coloration)



→ AHI Band 4 (856 nm) provides a 'boost' to the 510 nm vegetation and soil reflectance...





## Hybrid Green True Color Examples



## A Synthetic Green Band for ABI

GOES-R ABI has no green band—we must approximate it via correlations with other available bands.  $\rightarrow$  We are using Himawari-8 AHI for this development.



For GOES-R ABI, we will first construct  $G_S$  (510 nm), then compute  $G_{H,S}$  via:

$$G_{H,S} = F^*G_S + (1-F)^*R_{856}$$
, F = 0.93



Miller, S. D., C. Schmidt, T. Schmit, and D. Hillger, 2012, Int. J. Rem. Sens., **33**(13), 3999-4028.

## Merging Layers of Information The *GeoColor* Concept

Layers of Information (2 layer example)

Spatial Opacity Rules for Top Layer (Black= Opaque, White=Transparent)



- Each layer of information has an associated opacity field that is defined at the pixel level.
- A separate blend is done for each color gun (R/G/B).
- Concept can be extended to "N-dimensional blending," allowing for simultaneous display of multiple layers.

## AHI GeoColor (Provisional)



## Future Layers: AHI "DEBRA" Dust Mask (Provisional)

Visible

**Dust Enhancement** 



→ In early development for AHI, DEBRA is a confidence factor that could readily be used as another layer in GeoColor...

## **Optical Flow Image Filtering**





We are collaborating with computer scientist Dan Delany to apply the Farnebäck dense optical flow algorithm to geostationary imagery.

Farnebäck, G., 2003: Two-frame motion estimation based on polynomial expansion. Proc. 13<sup>th</sup> Scandinavian Conf. on Image Anal., 363-370.

## AHI GeoColor (Optical Flow)



## Conclusions

- Himawari-8 AHI provides a first opportunity to apply multispectral MODIS/VIIRS imagery algorithms to geostationary satellite data.
- AHI provides the best-available surrogate to GOES-R ABI for Proving Ground demonstrations.
- Development of AHI products will facilitate rapid transition of similar products to ABI.
- CIRA is collaborating closely with JMA to help users realize the full potential of AHI capabilities.

