Status of development for assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency

Koji Yamashita
Japan Meteorological Agency
kobo.yamashita@met.kishou.go.jp
Outline

• Background
• Purpose
• Verification of Himawari-8 Atmospheric Motion Vectors (AMVs)
• Revised pre-processing system for assimilation of Himawari-8 AMVs into Numerical Weather Prediction (NWP) Systems
• Test of observing system experiment (OSE) for Himawari-8 AMVs
• Summary
Background

• The Meteorological Satellite Center of JMA started production of Himawari-8 AMVs on July 7th, 2015.
 – The AMVs are being produced using three sequential Himawari-8 images with 10 minutes interval.

• It is reported that the quality of the Himawari-8 AMVs has been improved by employing new tracking and new height assignment algorithms. (Presented by Kazuki Shimoji in poster presentations tomorrow)

• It is expected that the typhoon track forecasts will be improved by assimilating such a higher-quality AMV data, consequently.
Purpose

• To start assimilating Himawari-8 AMVs in JMA NWP Systems with maximizing its impact

• For this purpose,
 – It needs to review the quality of Himawari-8 AMVs comparing with MTSAT-2 AMVs in detail.
 – And it needs to revise the quality control (QC) suitable for the Himawari-8 AMVs.
Verification of Himawari-8 AMVs
(Configuration)

• **Aim**
 – To validate by comparison between Himawari-8 AMVs and MTSAT-2 AMVs

• **Investigation items**
 – Frequency histograms, Mean error (ME) and standard deviation (STD) of O-B (Forecast guess departure)

• **Utilization data**
 – Obs.: Himawari-8 and MTSAT-2 AMVs with QI* exceeding 60%
 * QI: quality indicator (Holmlund 1998)
 – The first guess: Six hours forecast of JMA's operational global model (GSM)
 • The horizontal resolution of the GSM is 20km, approximately

• **Period**: From 15 February 2015 to 20 March 2015
O-B wind speeds histograms at 90N-20N

Infra red (IR)

Water Vapor (WV)

NH: 90N-20N

NLH: ≤ 400hPa

ML: 400-700hPa

LL: ≥ 700hPa

NH-IR-HL

H8: ME STD

MT2: ME STD

1184701

398727

0.15

2.63

-0.77

3.22

NH-IR-ML

-0.08 2.39

-0.76 3.15

1238220

254619

2655491

1779867

-0.16 1.65

0.03 1.73

NH-IR-LL

1100327

502840

-0.09 1.56

0.02 1.60

NH-WV-HL

0.44 2.65

0.31 3.28

1100327

502840

-0.09 1.56

0.02 1.60

NH-VS-LL

ME: Mean Error (unit: m/s)

STD: Standard Deviation (unit: m/s)
Revised pre-processing system for Himawari-8 AMVs

- Revised QI thresholds for rejecting AMVs with the low QI
- Introduction of a super-observation procedure (SPOB) which average AMVs in time, level, space, wind directions and speeds over Japan (20N to 45N and 120E to 150E)
- Revised climatological check
 - Rejecting of IR and VIS AMVs below 700 hPa over land

QI thresholds as of Nov.2015

<table>
<thead>
<tr>
<th></th>
<th>HL</th>
<th>ML</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>IR</td>
<td>85</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>VIS</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>WV</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>EQ</td>
<td>IR</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>VIS</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>WV</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>SH</td>
<td>IR</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>VIS</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>WV</td>
<td>95</td>
<td>85</td>
</tr>
</tbody>
</table>
GSM (Global Spectral Model)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal rez./ Vertical rez.</td>
<td>20 km / 100 level</td>
</tr>
<tr>
<td>Top</td>
<td>0.01 hPa</td>
</tr>
<tr>
<td>Inner-loop model rez. for DA</td>
<td>55 km</td>
</tr>
<tr>
<td>Assimilation method</td>
<td>4D-Var</td>
</tr>
<tr>
<td>Time windows</td>
<td>6 hour</td>
</tr>
<tr>
<td>Forecasts</td>
<td>84 hours / 264 hours (only 12UTC)</td>
</tr>
<tr>
<td>Used AMVs</td>
<td>MTSAT-2, GOES and Meteosat IR, VIS and WV (cloudy) AMVs; MODIS Terra and Aqua (IR and WV); NOAA and Metop AVHRR AMVs; LEOGEO AMVs</td>
</tr>
<tr>
<td>Other satellite data</td>
<td>Clear-sky radiance from MTSAT, Meteosat, GOES, 6 AMSU-As, 5 AMSU-B/MHSs, AMSR-E, SSMIS; scatterometer winds from ASCAT; Metop and COSMIC GPSRO</td>
</tr>
</tbody>
</table>
Experimental Design

<table>
<thead>
<tr>
<th>Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine (CNTL)</td>
<td>Same as Routine (Previous slide)</td>
</tr>
<tr>
<td>TEST</td>
<td>CNTL</td>
</tr>
<tr>
<td></td>
<td>+ Himawari-8 AMVs with revised pre-processing system</td>
</tr>
<tr>
<td></td>
<td>+ NO MTSAT-2 AMVs</td>
</tr>
</tbody>
</table>

- **Target**: two typhoon cases (NOUL (T1506) and DOLPHIN (T1507))
- **Period**:
 - Assimilation: From 1 to 24 May 2015
 - Forecast: From 1 to 20 May 2015
Normalized RMSE difference between TEST and CNTL on 500 hPa geopotential height against analyzed fields

Forecast lead time 6-hour (FT6)

Better

Worse

SPOB area

AOMSUC-6 (S02-3) 10th November 2015
Case Study on Impact of Himawari-8 AMVs using JMA’s global NWP system
A sample of the assimilated data distribution (12 UTC, 10 May 2015)

Weather chart with MTSAT-2 infrared satellite image

MTSAT-2 AMVs on 250 hPa in vicinity of Japan, which were assimilated into the routine system

Himawari-8 AMVs on 250 hPa in vicinity of Japan, which were assimilated into the test system

Himawari-8 AMVs were derived from three sequential satellite images with 10-minute time interval by a new retrieval method based on maximum likelihood estimation.

MTSAT-2 AMVs were derived from three sequential satellite images with 15- or 30-minute time interval.

(Himawari-8 and MTSAT-2 AMVs used for this study were produced by Meteorological Satellite Center of JMA.)
Typhoon track forecasts using Himawari-8 AMVs
- Impact of Himawari-8 AMVs compared to routine -

Typhoon track forecast errors averaged for NOUL (T1506)

CNTL(Routine): Result by assimilating MTSAT-2 AMVs
TEST: Result by assimilating Himawari-8 AMVs

Period:
Assimilation: From 1 to 24 May 2015
Forecast: From 2 to 12 May 2015

Typhoon track forecast of NOUL (T1506) initialized at 12 UTC on 10 May 2015.
Black is the best track. CNTL(Routine) and TEST are same to the left panel.
Summary

• Verification of Himawari-8 AMVs
 – Proper Gauss distributions in data assimilation
 – Better accuracy Himawari-8 AMVs comparing to MTSAT-2 AMVs

• Revised pre-processing system for assimilation of Himawari-8 AMVs
 – Revised QC and introduction of SPOB over Japan

• Test of OSE for Himawari-8 AMVs
 – Reduced forecast errors on 500 hPa geopotential height over the Himawari-8 observation area, especially around Japan
 – Reduced mean positional error for typhoon NOUL (T1506) after 18-hour forecast lead time
 – No impact on tract forecast of typhoon DOLPHIN (T1507)