Preliminary validation of Himawari-8/AHI navigation and calibration

Arata Okuyama¹, Akiyoshi Andou¹, Kenji Date¹, Nobutaka Mori¹, Hidehiko Murata¹, Tasuku Tabata¹, Masaya Takahashi¹, Ryoko Yoshino², Kotaro Bessho¹

1: JMA/MSC, 2: JAXA

Introduction

History of AHI data quality

• Ground software had been updated frequently before operation start.

		Him	nawari-8/AH	GOES-R/ABI		
	Band	Wave	Spatial	Bit	Wave	Spatial
		length	resolution	depth	length	resolution
	1	0.47 µm	1 km	11	0.47 µm	1 km
	2	0.51 µm	1 km	11		
to 6	3	0.64 µm	0.5 km	11	0.64 µm	0.5 km
	4	0.86 µm	1 km	11	0.86 µm	1 km
					1.38 µm	2 km
to 16	5	1.6 µm	2 km	11	1.61 µm	1 km
	6	2.3 µm	2 km	11	2.26 µm	2 km
	7	3.9 µm	2 km	14	3.90 µm	2 km
	8	6.2 µm	2 km	11	6.15 µm	2 km
	9	6.9 µm	2 km	11	7.00 µm	2 km
	10	7.3 µm	2 km	12	7.40 µm	2 km
	11	8.6 µm	2 km	12	8.50 µm	2 km
4µrad	12	9.6 µm	2 km	12	9.70 µm	2 km
	13	10.4 µm	2 km	12	10.3 µm	2 km
	14	11.2 µm	2 km	12	11.2 µm	2 km
	15	12.4 µm	2 km	12	12.3 µm	2 km
	16	13.3 µm	2 km	11	13.3 µm	2 km

• Image Navigation Registration (INR)

- 16 and 23 January
 - Landmark analysis is applied to attitude information
- 3 February
 - Band-to-band coregistration process is activated for Band 1 to 6
- 26 March
 - Band-to-band coregistration process is activated for Band 7 to 16
- <u>Calibration</u>
 - 2 and 9 March
 - Software for image processing is updated
 - 10 and 13 March

Operation start: 7 July 2015

- Software for image processing is updated
- 18 May
 - Angular sampling distance is changed (EW direction) e.g. 14µrad to 13µrad for Band 3
- 8 June
 - Calibration coefficients is updated

Information of the GOES-R/ABI is based on WMO OSCAR Web page.

- http://www.wmo-sat.info/oscar/instruments/view/3

Raw data to HSD (Himawari Std. Data)

<u>INR</u>

- Satellite orbit: Ranging data
- Satellite attitude: Star tracker, gyro, ...
- AHI's attitude is adjusted using landmark analysis
- Band-to-band co-registration is performed by pattern matching between bands for each full-disk swath.

<u>calibration</u>

VNIR:

- $L = q(C C_{sp})^2 + m(C C_{sp})$
- C_{sp} : based on deep space view every swath.
- *m*: based on offline analysis of solar diffuser observation.
- *q*: a pre-launch value.

IR:

- $L = qC^2 + mC + b$
- *b*: based on deep space view every swath.
- *m* : based on BB and deep space view every 10 minutes.
- *q* : a pre-launch value.

Himawari Standard Data

Validation

Residual navigation error

2015/07/07 00:00:20 UTC

^{Pix} (2km) Residual navigation error (Band 13)

MEAN OF VECTOR MAGNITUDES(pxls): 0.16(=0.3 km) MEAN VECTOR(pxls): PIX -0.00, LIN +0.10, MAG 0.10(=0.2 km), # OF SAMPLES: 618

- * Wmv movie
- Residual navigation error is less than around 0.5 pixels (1 pixel = 2 km).
 - Occasionally and provisionally, there are "spike" in the next observation of orbit determination and the timing of satellite going into and going out from shadow of the earth.

Co-registration Error (relative to Band 13, 10.4µm)

- The residual co-registration error: ~0.1-0.2 pixels (1 pixel = 2 km) for most bands.
 - VIS/NIR & B07 relatively large co-registration error from midnight to dawn
 - Root cause could be an estimation error of co-registration correction using the sensor temperature

The Sixth Asia/Oceania Meteorological Satellite Users' Conference

9 – 13 November 2015, Tokyo/Japan

Jitter

- Fluctuation magnitude: validated using successive two images
- The variation is reduced to less than 0.5 pixels in EW/NS (1 pixel = 2 km).

	2015-0	06-11	2015-02-20		
	Mean	Stdv	Mean	Stdv	
EW	-0.04	0.16	-0.09	0.68	
NS	-0.02	0.12	-0.07	0.27	
magnitude	0.12	0.17	0.62	0.40	

The Sixth Asia/Oceania Meteorological Satellite Users' Conference

9 – 13 November 2015, Tokyo/Japan

Calibration/Validation approaches

Band [µm]	Solar Diffuser	Black Body	GSICS (IR)	GSICS (DCC)	GSICS (Moon)	RT simulation	Ray matching	GEO-GEO
Band1 [0.47]	Y			(Y)	(Y)	Y	Y	Y
Band2 [0.51]	Y			(Y)	(Y)	Y	Y	Y
Band3 [0.64]	Y			(Y)	(Y)	Y	Y	Y
Band4 [0.86]	Y			(Y)	(Y)	Y	Y	Y
Band5 [1.6]	Y			(Y)	(Y)	Y	Y	Y
Band6 [2.3]	Y			(Y)	(Y)	Y	Y	Y
Band7 [3.9]		Y	Y					Y
Band8 [6.2]		Y	Y					Y
Band9 [6.9]		Y	Y					Y
Band10 [7.3]		Y	Y					Y
Band11 [8.6]		Y	Y					Y
Band12 [9.6]		Y	Y					Y
Band13 [10.4]		Y	Y					Y
Band14 [11.2]		Y	Y					Y
Band15 [12.4]		Y	Y					Y
Band16 [13.3]		Y	Y					Y

GSICS (Global Space-based Inter-Calibration System GSICS):

An international collaborative effort for inter-calibration initiated by WMO and the CGMS

IR validation approach: Inter-calibration with LEO hyper-spectral sounder

- The validation approach is developed under the GSICS collaboration framework.
- **Reference** instruments
 - Metop-A/IASI, Metop-B/IASI, Aqua/AIRS and S-NPP/CrIS
- Collocation of GEO and LEO based on SNO approach
- Generation of GEO imager "super-channel"
 - Convolution of LEO spectra with GEO spectral response
- Regression of GEO and LEO in radiance

* simulated radiance under the standard atmosphere, SST=288.15, night time, clear sky and nadir.

В

TB biases Time Dependence

- No significant bias, diurnal calibration variation
- |TB bias| < ~0.2K
- w/ uncertainty of ~5mK

Reference sensor

- Metop-A/IASI
- Metop-B/IASI
- Aqua/AIRS
- S-NPP/CrIS

Monthly statistics in April 2015

VIS/NIR validation approaches

A) Vicarious cal. using RT Simulation

Reference

- simulated radiance for multiple targets such as cloud-free ocean, liquid cloud
- **Collaboration research**
- with the University of Tokyo and JAXA/EORC [Prof. Nakajima]

B) Ray-matching w/ S-NPP/VIIRS

<u>Reference</u>

- S-NPP VIIRS data with close observation time and geometry condition
- SRF difference is corrected based on the Spectral Band Adjustment Factor^{*}
 * http://www-pm.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=SBAF

B01 (0.47μm) radiance

Validation of Calibration Slope Update

- Calibration coefficients were updated based on SD observation on 8 June.
- Bias: reduced (except for Band 5) after the update
 - Discrepancy of validation results will be investigated further
- Trend analysis of SD observation will also be performed

Reference:

- RT simulation
- VIIRS observation

• Other Cal/Val approaches (e.g. lunar, deep convective cloud): under implementation

Coherent noise

- Coherent noise (all bands)
 - Vertical stripe can be seen over low radiance region such as deep space and clear sky ocean.
 - Correction module was implemented to band 7.
 - The module will be also applied to other noisy bands.

Summary

Navigation

- The residual error is less than 0.5 pixels for 2km resolution bands in many cases.
- The residual co-registration error is around 0.1-0.2 pixels for most bands.
- Jitter is less than 0.2 pixels.

VIS/NIR (Band 1-6)

- Calibration coefficients update (8 June 2015)
- Band 1 to 4: No significant bias; Band 5 and 6: ~7% discrepancy is indicated at most
- IR (Band 7 to 16)
 - No significant Tb bias (0.2 +/- 0.005K)
- Monitoring Web page
 - Calibration/Navigation status is available on *http://www.jma-net.go.jp/msc/en/*

Current issue: Validation with multi approaches

e.g. Lunar calibration

cf. Poster (P08) "Visible channel calibration of JMA's geostationary satellites using the Moon images" by M. Takahashi and A. OKuyama

Band5 (1.6µm)