6th Asia-Oceania Meteorological Satellite Users' Conference(Nov 10, 2015)

Satellite Programs & Applications of KMA: Current & Future

Sang Jin LYU

National Meteorological Satellite Center Korea Meteorological Administration sjlyu@korea.kr

Contents

1. Current status of COMS

2. Application of satellite data

3. Plan for Geo-KOMPSAT-2A & LEO satellite

Current status of COMS

Observation Schedule of COMS

FD

ENH every 15 min

FD every 3 hour

Every 30 min → 15 min Early detection of severe weather

channel	Wave length(µm)
Visible	0.67
Shortwave IR(IR4)	3.7
Water Vapor(IR3)	6.7
IR1	10.8
IR2	12.0

COMS VIS 2014. 3. 24 23:45 UTC[02. 14 08:45 KST] KMA

COMS Products

16 Baseline Products : Development (2003-2010) and Operation (2011~)

Application of satellite data

Earth Environment Monitoring (Hydrology, Climate & Space Weather)

K-GPM Retrieval Algorithm: D/B, Inversion

Bayesian retrieval algorithm

Prototype Algorithm Flow

국가기상위성센터

K-GPM Retrieval Algorithm: G. Validation

8

Evapotranspiration from COMS

Artic Sea Ice: http://seaice.kma.go.kr

Space Weather Services

- Development of public warning system & prediction model for the space weather services
- Space environment sensor to be installed on GEO-KOMPSAT-2A

Plan for Geo-KOMPSAT-2A & LEO satellite

Geo-KOMPSAT-2 Program

→ GK-2A for the next generation Meteorological Imager and SWx monitoring
 → GK-2B for the Ocean Color and Atmospheric Trace Gas monitoring

AMI(Geo-KOMPSAT-2A)

AMI(Advanced Meteorological Imager) (cf. AHI/Himawari-8/9, ABI/GOES-R)

	Wavelengh(µm)					
Channels	AMI		AHI (Himawari)	MI (COMS)	SEVIRI	MODIS
	(GK-ZA)	(GOL3-K)				0.466(D02)
I(VIS) blue	0.470	0.470	0.40			0.400 (603)
2(VIS) green	0.511		0.51			0.554 (B04)
3(VIS) red	0.640	0.640	0.64	0.675	0.6	0.647 (B01)
4(VIS)	0.856	0.865	0.86		0.8	0.857 (B02)
5(NIR)	1.380	1.378				1.382 (B26)
6(NIR)	1.610	1.610	1.6		1.6	1.629 (B06)
NIR		2.250	2.3			2.114 (B07)
7(IR)	3.830	3.90	3.9	3.75	3.9	3.788 (B20)
8(WV)	6.241	6.185	6.2		6.2	6.765 (B27)
9(WV)	6.952	6.95	7.0	6.75		6.765 (B27)
10(WV)	7.344	7.34	7.3		7.3	7.337 (B28)
11(IR)	8.592	8.50	8.6		8.7	8.529 (B29)
12(IR)	9.625	9.61	9.6		9.7	9.734 (B30)
13(IR)	10.403	10.35	10.4	10.8	10.8	B30+B31
14(IR)	11.212	11.20	11.2			11.019 (B31)
15(IR)	12.364	12.30	12.3	12.0	12.0	12.032 (B32)
16(IR)	13.31	13.30	13.3		13.4	13.365 (B33)

14

Observation Domain & Schedule(TBD)

15

KSEM (Korean Space Environmental Monitor)

KSEM specification

Sensor Unit	Measurement Range	Accuracy	Time Resolution	Remark
PD	100KeV ~ 2MeV	<30%(ΔE/E)	0.33s	6 measurement direction
MG	-350nT ~ +350nT	<1nT	<0.1s	Boom type
СМ	-3pA/cm ² ~+3pA/cm ²	<0.01 pA/cm ²	< 1s	-

Particle detector (3ea)

Aluminum Cover,

Magnetic field sensor(2ea)

Charging Monitor(1ea)

Development of space weather products

 Korea Space Environment Monitor(KSEM)
 Measurement of electron on mid energy range and magnetic field

Support for satellite operation, aviation safety, impact on weather & climate

Data

- Time(satellite position)
- Energy channel (electron)
- Particle flux (each direction)
- Magnetic field flux(3axis)
- Background flux
- Noise
- Payload monitoring data (Voltage, darkcurrent, etc.)

Products(5)

- real-time high energy particle distribution over the radiation belt
- 3D particle distribution /prediction
- deep dielectric charging prediction index
- geomagnetic storm index(2)

GOCI-II(Geo-KOMPSAT-2B)

GOCI-II(Geostationary Ocean Colour Imager-II)

- the succession and expansion of the mission of GOCI.
- supporting user-definable observation requests such as clear sky area without clouds and special-event areas, etc.
- 10 times daily regional and 1 time daily global observation
- higher spatial resolution, 300m×300m, and 13 spectral bands

Items	GOCI Specs	GOCI-II Specs	
Bus	COMS	GEO-KOMPSAT-2B	P21+Y2+73 _{0,00} . P1(+Y.2) P1(+Y.2)
Increased band number	8 bands	13 bands	
Improved spatial resolution	500m	300m	
More observations	8 times/day	10 times/day	
Pointable & Full Disk coverage	Local Area	Local Area + Full Disk	Selected LA FD (Red Circle)

GEMS(Geo-KOMPSAT-2B)

· 국가기상위성센터 National Meteorological Satellite Center

GEMS(Geostationary Environmental Monitoring Spectrometer)

- Contributing to Atmospheric Composition Constellation under the Committee on Earth Observation Satellites (CEOS)
- understanding of the globalization of pollution events, source/sink identification, and long-range transport of pollutants and short-lived climate forcers (SLCFs)
- baseline : Korea (GEMS), Europe (Sentinel-4), and the US (TEMPO)

Bus	GEO-KOMPSAT-2B		
Payload	Scanning UV-Visible(300-500 nm) Spectrometer		
Measurement	O3, NO2, SO2, HCHO, Aerosols		
Duty cycle/Ima ging time	8 images during daytime (30 min imaging + 30 min rest) × 8 times/day		
Field of regard	 > 5,000 km(N/S) × 5,000 km(E/W) N/S: 45° N~5° S, E/W: Selectabl e between 75° E~145° E 		

Development of Meteorological Products(1/2)

- KMA/NMSC has started to develop algorithms of fifty-two meteorological products for nowcasting, numerical weather prediction, climate and so on.
- Development Schedule
 - 2014-2016 : Algorithm Development
 - 2017-2018 : Validation and Integration of Algorithm for Operation
- 4 Algorithm Groups
 - Cloud and Precipitation, Radiation and Aerosol, Atmosphere and Aviation, Scene analysis and Surface information
 - Radiative Transfer Model and Calibration/Validation

New techniques in GK-2A product development

- Establishment of "algorithm test-bed" to share data and optimize scientific algorithm to operation system
- Introduction of "optimal estimation" for consistency within cloud products "Discriminate clouds optical properties" for increase of products accuracy
- Utilization of "machine learning" to detect some phenomena more accurately

Development of Meteorological Products (2/2)
 국가기상위성센터 Network Meteorological Products (2/2)

Scene & Surface Analysis (13)	Cloud & Precipitation (14)	Aerosol & Radiation (14)	Atmospheric condition & Aviation (11)
Cloud detection	Cloud Top Temperature	Aerosol Detection	Atmospheric Motion Vector
Snow Cover	Cloud Top Pressure	Aerosol Optical Depth	Vertical Temperature Profile
Sea Ice Cover	Cloud Top Height	Asian Dust Detection	Vertical Moisture Profile
Fog	Cloud Type	Asian Dust Optical Depth	Stability Index
Sea Surface Temperature	Cloud Phase	Aerosol Particle Size	Total Precipitable Water
Land Surface Temperature	Cloud Amount	Volcanic Ash Detection and Height	Tropopause Folding Turbulence
Surface Emissivity	Cloud Optical Depth	Visibility	Total Ozone
Surface Albedo	Cloud Effective Radius	Radiances	SO ₂ Detection
Fire Detection	Cloud Liquid Water Path	Downward SW Radiation (SFC)	Convective Initiation
Vegetation Index	Cloud Ice Water Path	Reflected SW Radiation (TOA)	Overshooting Top Detection
Vegetation Green Fraction	Cloud Layer/Height	Absorbed SW Radiation (SFC)	Aircraft Icing
Snow Depth	Rainfall Rate	Upward LW Radiation (TOA)	
Current	Rainfall Potential	Downward LW Radiation (SFC)	
	Probability of Rainfall	Upward LW Radiation (SFC)	

Lessons from COMS

- It is not enough to provide each L2 product separately for the purpose of operational forecast
 - Insufficient accuracy
 - Limited information on the internal structure of cloud and rain
 - Too much data already to analyze
- ✓ If the users such as forecasters do not understand the properties and limitations of satellite data, they do not use L2 products in their decision making processes.
- Therefore, it is essential to develop integrated analysis and application facilities using L2 products together with available data such as MWs, surface and NWP data to support decision makers.
- And we need to prepare a practical guidance for users and train them before we launch the new satellite to maximize the utilization of satellite data.

Development of Integrated Analysis & Application Facilities

1. Nowcasting

- Objective cloud analysis through conceptual model
- Early detection & warning of convective cloud & rain
- QPE by composite & short-term prediction of L1 and L2

2. Tropical Cyclone & Ocean

- Improvement of objective TC analysis(ADT)
- Intensification & weakening of TC: OHC, MPI, Vertical Shear
- 3-D Wind structure: MWs + IR + HRW + SSWs + NWP

3. Supporting Data Assimilation & NWP

- QC & observation error estimation(R)
- Observation operator(RTM) & 1D-Var
- Impact of satellite data in terms of analysis improvement

4. Hydrology & Environment

- Soil moisture, evapotranspiration & drought
- Flood, wild fire & Asian dust(height, concentration)

Tools for composite & downscaling, standard frame of validation

Application Facilities: Analysis & Nowcasting

- Objective cloud analysis through conceptual model
- Early detection & tracing of rapidly developing convective cloud & rain

Courtesy of MeteoFrance

Application Facilities: Analysis & Nowcasting

- QPE: composite of MWs + IR(every 10 min, < 10km)
- Short-term prediction(+6hrs) of L1, L2 & RGB products

IMERG(30min, 10X10km): 2015.7.6-7.13

Application Facilities: Typhoon and Ocean

- Improvement of objective TC analysis(ADT) for NW Pacific
- Detection of TC intensification & weakening: OHC, MPI, Vertical Shear •

Ocean Heat Content: SST + SSH + Mixed Layer Depth

Maximum Potential Intensity

$$V^2 = rac{SST - T_0}{T_0} rac{C_k}{C_D} (k^* - k)$$
 (Emanuel, 1999)

 $T_0 = TC$ outflow temperature $C_{\rm D} = Drag \ coefficient$ $C_k = Enthalpy Exchange coefficient$ k^* = Saturation Enthalpy of sea surface k = Surface Enthalpy in TC environment

RSMAS/

Application Facilities: Typhoon and Ocean

3-D wind structure: MWs + IR + AMV + Scatterometer Wind

From Vélden et al., IWW7 04

Simulated ABI 2-km, 5-Minute Atmospheric Motion Winds From GOES-12

GIFTS HIOP simulation

1830z 12 June 02

Shear, Div, Conv, Vorticity(CIMSS)

Application Facilities: Data Assimilation & NWP

- QC & Obs Error Estimation(R)
- Observation Operator(RTM) & 1D-Var
- Impact of satellite data in terms of analysis improvement
- Assimilation of new sat data: HRW, All Sky Radiance, Precipitation, Surface

High Resolution Wind

All Sky Radiance

Application Facilities: Hydrology & Environment

• Soil Moisture & Drought: MWs + IR + VIS + Surface

Flood & Wild Fire: IR + VIS + Surface; Asian dust(height, concentration)

COMS MI vs. GEO-KOMPSAT-2A AMI

GK-2A Data Service Plan via GK-2A

- Broadcast all 16 channels data in UHRIT
- Maintain L/HRIT broadcast corresponding to COMS five channels
 - Develop the functions to generate COMS-like L/HRIT image data from GK-2A obs.
 - KMA will support technical issues on receiving GK-2A L/HRIT for COMS S/MDUS
- GOCI-II data on GK-2B will be broadcasted by GK-2A in HRIT

	GK-2A (TBD)	COMS -> GK-2A		
	Ultra HRIT	HRIT	LRIT	
Data Rate	<u><</u> 31 Mbps	3 Mbps	~256 Kbps	
Contents	16 channel data Alpha-numeric text Encryption Key Message	5 channel data (VIS, IR1, IR2, SWIR, WV) Alpha-numeric text Encryption Key Message GOCI-2 data	5 channel image (VIS, IR1, IR2, SWIR, WV) Alpha-numeric text Encryption Key Message Level 2 Data (Cloud Info.) GOCI-2 image	
Resolution	0.5 ~ 2km (Full resolution)	1 ~ 4km	-	
Domain	FD	FD	FD	
User	LDUS	MDUS	SDUS	

GK-2A Data Service Plan via land line (website) 21/169/64/16

[Internet Service]

- Data service of all 16 AMI channels in full resolution similar to HimawariCloud is under consideration
- All Level 1B and some of Level 2 data will be available on DCPC– NMSC website (http://dcpc.nmsc.kma.go.kr/openwis-user-portal/en/src/main.home)

[Web-based Retrieval & Analysis Tools]

 Upgraded & user-friendly web-based system will be established for GK-2A data usage in operational forecast and research

Milestone for the Geo-KOMPSAT-2A

국가기<u>상위성센터</u>

LEO Satellite development plan

Plan

research

2015

- Long-term roadmap for LEO meteorological satellite development
- Prepare report for feasibility test
- Initiate the 3 year project for development of micro MW sounder

Feasibility test for LEO satellite

Execute the feasibility test for securing budget for LEO satellite including political and technical validity, economical validity
 2nd year of the project for MW sounder

Development of the LEO satellite

- Kick-off development of LEO satellite program
- Satellite bus, system integration and developing testing technique
- Ground segments development and secure a image quality technique

Launch /Utilization 2022-

Application of data Utilization plan

- Apply to weather, climate, earthquake, volcano, disaster, etc.
- Data utilization research for global water/climate, etc.
- Supply standard input data of numerical model

Satellite development 2017-

Secure

a budget

2016

LEO Satellite development plan

- Development (plan) : ~ 2022 (or earlier)
- Altitude/orbit : 500~900km/Sun-synchronous(тво), early morning orbit
- Satellite : ~500kg; Payload: ~150kg
- Possible Payload : MW Sounder such as ATMS & AMSU
 - : IR Sounder such as CrIS with limited channels
 - : MW Imager such as GMI
 - ~ one or two instruments depending on weight of payloads(~150kg)
 - ~ instrument type will be decided based on feasibility test
- International cooperation / joint development for payload and sensors

Thank You

Announcements about next conferences

> The 7th Asia-Oceania Meteorological Satellite Users' Conference

- Jointed with the 22nd AMS Satellite Conference & 2nd KMA IMSC
- Venue: Incheon(Song-do), Republic of KOREA
- Date: 23 29 October, 2016

2-day Training, 4-day Conference, one-day Meeting for WIGOS

The 1st KMA International Meteorological Satellite Conference

- Venue/Date: Palace Hotel, Seoul/16-18 November, 2015
- Main Programs
 - : GK-2A Development & Ground Segment
 - : GK-2A Algorithms & Applications
 - : Space Weather
 - : Development of Low Earth Orbit Satellite
 - : Student Research Competition