THE EUMETSAT SATELLITE PROGRAMMES

AN OVERVIEW FROM NOW TO THE FUTURE

Kenneth Holmlund EUMETSAT And many other contributors from EUMETSAT and its partners

Current EUMETSAT satellite fleet

(GEOSTATIONARY ORBIT)

TWO-SATELLITE SYSTEM:

- MSG-4 (METEOSAT-11) under commissioning
- METEOSAT-10: FULL DISK IMAGERY MISSION AT 0° (15 MN)
- METEOSAT-9: RAPID SCAN SERVICE OVER EUROPE AT 9.5°E (5 MN)
- METEOSAT- 8: BACK UP AT 3.5°E

(GEOSTATIONARY ORBIT)

INDIAN OCEAN DATA COVERAGE MISSION AT 57°5 E (UNTIL END 2016)

EUMETSAT programmes overview

Future programmes shape the 2020 – 2040 timeframe

MTG: Approved, under development Sentinel-4 approved (funded by Copernicus)

Jason-CS/Sentinel-6: Approval process ongoing

EPS-SG: Approved, under development Sentinel-5 approved (funded by Copernicus)

From MVIRI on MTP...

Meteosat-7 is the last Located over - Indian Ocean

- until end of 2016

From MVIRI on MTP to SEVIRI on MSG...

MSG-4 (Meteosat-11) - is the last - in-orbit storage 2.5 y Indian Ocean Data is coverage is considered using Meteosat-8

Visual Analysis: Monitoring Stages of Convection

23. September 2009 Mediterranean Sea

Visual Analysis: Monitoring Stages of Convection

BT 240 K 200 K

Cloud Processor Optimal Estimation : 2-layer cloud retrievals

Met-8 super-rapid scans 2.5 min experiment

2.5 minutes Repeat Cycle

20 JUN 13 09:02:14

20 JUN 13 09:02:14

15 minutes Repeat Cycle

Meteosat Third Generation: Mission overview

- Imagery mission implemented by a two-satellite MTG-I system:
 - Full disk imagery every 10 minutes in 16 spectral bands
 - Fast imaging of European weather every
 2.5 minutes
 - 3. Lightning Imager (LI)
- Hyperspectral Infrared (IRS) Sounding mission:
 - 4. 3D mapping of water vapour, temperature, O3 every 1 hour
 - 5. Air quality monitoring and atmospheric chemistry
 - in synergy with Sentinel-4 Ultraviolet Visible
- start of operations in 2021 and 2023
- operational exploitation: 2020 2040

From MVIRI on MTP...

Meteosat-7 is the last Located over - Indian Ocean

- until end of 2016

From MVIRI on MTP to SEVIRI on MSG...

MSG-4 (Meteosat-11) - is the last - in-orbit storage 2.5 y Indian Ocean Data is coverage is considered using Meteosat-8

From MVIRI on MTP to SEVIRI on MSG to MTG FCI

14 AOMSUC 6, Tokyo November 2015

LI reference processor development – product example

"Accumulated flash area" product, integrated over 15 minutes and updated every 30 seconds Date: 20 June 2013.

15 AOMSUC 6, Tokyo Nov

MTG Mission: InfraRed Sounder (IRS)

- MTG-IRS will deliver unprecedented information on horizontal and vertical gradients of moisture, wind and temperature from the geostationary orbit:
 - Full Disk Sounding;
 - Repeat Cycle = 60 min;
 - spatial resolution of 4 km,
 - hyperspectral soundings at 0.625 cm-1 spectral sampling in two bands:
 - Long-Wave-IR (LWIR: 700 1210 cm-1 ~820 spectral samples)
 - Mid-Wave-IR (MWIR: 1600 2175 cm-1 ~920 spectral samples)

MTG-IRS observations

MTG-IRS and short range NWP

Simulating the Geo-IRS perspective

University of Wisconsin-Madison Space Science and Engineering Center Cooperative Institute for **Meteorological Satellite Studies**

> 220 250

280 -15

-10

-5

0

5

10

15

20

25

Red = extreme instability

UW/CIMSS

06-12-2002, 1200 UTC Lifted Index [°C]

06-12-2002, 1200 UTC Radar reflectivity [DBZ] 12 75 70 65 60 36[°] N 55 50 45 40 35 30 34[°] N 25 20 15 10 5 ٥ 104[°] W 102[°]W 100°W ss°₩ 96[°] W

19 AUIVISUU 6, TOKYO INOVERTIDER 2015

 IRS-L2DVP retrieved atmospheric state as additional input to LAPS for two cases of convective activities over Finland (01 June 2012 and 29 July 2012)

MTG Mission: hosting GMES Sentinel-4

- The GMES Sentinel-4 sounding mission is achieved through the Ultraviolet, Visible & Near-infrared (UVN) Instrument accommodated on the MTG-S satellites
 - covering Europe every hour
 - taking measurements in three spectral bands (UV: 305 - 400 nm; VIS: 400 -500 nm, NIR: 750 - 775 nm)
 - with a resolution around 8km.
- The primary data products are O3, NO2, SO2, HCHO and aerosol optical depth.

Synergies of missions flying on MTG

EUMETSAT Polar System Programme

Polar Stations Svalbard, 78 deg North

LEOP Service (ESOC)

Launcher Service (Soyuz, Baikonur)

EUMETSAT Mission Control Centre

Satellite Application Facilities (SAF) 8 Meteorological Themes

- Metop-A launched in 2006
- Metop-B launched in 2012
- Metop-C launch scheduled for 2019
- Sun Synchronous orbit
- 820 km, 9h30 LST,100 min
- Sole source of mid-morning orbit data
- 11 Instruments
- Soyuz Launcher Service (Baikonur/Kourou)
- ESOC LEOP Service (Darmstadt)
- Central & distributed Ground Segment components
- 14+ years of operations

The EUMETSAT polar system as part of the initial joint polar system shared with the US

- Coordinated programmes
- Exchange of instruments
- Coordinated operations, data and services
- Only Metop provides mid-morning service
- And now China has committed to the early morning orbit

Current Capabilities - EUMETSAT Polar System

Atmospheric Profiling Hyperspectral Infrared L2 - IASI L2 v6 TCWV vs MSG

Results: M. Koenig (EUMETSAT)

Aerosol: PMAp (GOME-2 + AVHRR) Metop A & B combined

Metop-B is in the same orbital plane as Metop-A

AVHRR winds

Single Metop polar, 17/09/2014, 1:31-1:52

Global AVHRR, 18/09/2014, 9:04-9:46

EPS Second Generation

Primary mission: further improve observational inputs to Numerical Weather Prediction models

- Significant contributions to other real time applications:
 - Nowcasting at high latitudes
 - Marine meteorology and operational oceanography
 - Operational hydrology
 - Air quality monitoring
- Climate monitoring: expand by 20+ years the climate data records initiated in 2006 with EPS

EPS Second Generation

 Continuation and enhancement of service from mid morning polar orbit in 2021 – 2040

Twin satellite in-orbit configuration:

JPSS Science Team Meeting 2015

- Metop-SG A: optical imagery and sounding mission
 - Flies the Copernicus Sentinel-5 instrument
- Metop-SG B: microwave imaging mission
- Two series of 3 successive satellites for 21 years of operations
- European contribution to the Joint Polar System (JPS) shared with the US/NOAA

EPS Second Generation

- Launcher: Soyuz in Kourou / Falcon 9 / Ariane 5
- Orbit: MetOp Sun Synchronous Orbit 817 km, 9h30 Local Time at Descending Node
- Controlled re-entry into the South Pacific Ocean Uninhabited Area

EPS Second Generation Instruments' Overview

33 AOMSUC 6, Tokyo November 2015

RO

ICI

EPS-SG Current Status

- Achieved approval of the scope and contents of the EPS-SG Programme Proposal which includes the draft cooperation agreements with ESA, CNES, DLR and NOAA
- Achieved in June 2015 approval of full EPS-SG programme from January 2016 onwards
- System Preliminary Design Review (PDR) successfully completed in June 2015
- ESA: Prime contractors for the Metop-SG A and B satellites selected and Phase B2 kicked off in June 2014, PDR planned for September 2015
- CNES: IASI-NG PDR successfully completed in May 2015
- CNES: The first flight model of A-DCS4 for EPS-SG is under assembly
- DLR: METimage instrument PDR successfully completed in July 2015
- EUM: Overall Ground Segment PDR planned for September 2015

MONITORING THE OCEAN IN SUPPORT OF COPERNICUS

Sentinel-3 Satellite and Payload First launch Early 2016

- SLSTR: Sea and Land Surface Temperature Radiometer
- SRAL: Synthetic Aperture Radar Altimeter
- OLCI: Ocean and Land Colour Instrument
- MWR: Micro-Wave Radiometer
- LRR: Laser Retro-Reflector
- DORIS: Doppler Orbitography and Radiopositionning Integrated by Satellite
- STM: Surface Topography Mission = SRAL + MWR

Sentinel-3 Marine product contents

Level 1B: SLTSR (radiance, BT at TOA) and OLCI (radiance at TOA) and

SRAL(waveforms)

(ESA and EUMETSAT)

Level 2 SLTSR:

• Sea surface temperature (L2P GHRSST standard)

a ice thickness in the Arctic or

Level 2 OLCI:

- Normalised water surface reflectance
- Algal pigment concentration for open and for coastal waters
- Total suspended matter concentration
- Diffuse attenuation coefficient
- Coloured dissolved matter absorption
- Photosynthetically active radiation
- Integrated water vapour
- Aerosol optical depth
- Aerosol Angström exponent

Level 2 SRAL:

• Sea/coastal zone surface height

0.3 0.2 0.1 0.0

- Significant wave height
- Wind speed
- Backscatter coefficient σ₀
- Sea ice height, freeboard
- Total water, liquid water (from MWR)

From Jason-2 to Jason-3 (launch 12/2015), Jason-CS: Global sea level rise

IPCC projections: Uncertainties

Observational evidence: Unique Climate Data Record

Global mean sea level during the altimetry era has risen at a nearly constant rate since 1993 (+- 3 mm/year).

Relatively consistent despite large regional interannual variations and accelerations in the melting of land ice.

Combining Sentinel-3 & Jason altimetry for operational oceanography and climate change monitoring

(Courtesy CNES/CLS/ESA)

Mean sea level trends : regional differences

- Why has the western Pacific risen 3 times faster?
- Why has sea level dropped near the U.S. West Coast?
- How will regional sea level change in the future?

THANK YOU – QUESTIONS?

