All-sky infrared radiance assimilation of Himawari-8 in the global data assimilation system at JMA

Kozo Okamoto, T. Ishibashi, I. Okabe

Japan Meteorological Agency (JMA)
Meteorological Research Institute (MRI)

This study was partly supported by
• JAXA 2nd Research Announcement on the Earth Observations
• JSPS KAKENHI Grant Number 19H01973

Content
1. Background and objective
2. Development of ASR assimilation
3. Data assimilation experiments
4. Additional impact studies
5. Summary and plans

The 12th Asia Oceania Meteorological Satellite Users’ Conference, Online, 11 – 18 November 2022
1. Background

IR radiance assimilation is significantly beneficial for NWP
- Mostly limited to clear-sky radiances (CSR)

IR all-sky radiance (ASR) assimilation will be more beneficial because
- Increasing obs coverage (homogeneous spatial and temporal distribution)
- Reducing sampling bias (e.g. dry bias)
- Exploiting cloud and unique obs info (e.g. vertically resolved temperature at cloud top)

Challenges of ASR assimilation (compared with CSR assimilation)
- Poorer representation in radiative transfer model (RTM) and forecast model
- Stronger situation-dependency of obs statistics
- Higher non-Gaussianity and non-linearity

Encouraging results in many recent studies
- Zhang et al. (2016, GRL), Honda et al.(2018 MWR; 2018 MWR, JGR), Minamide & Zhang (2017 MWR; 2018 MWR), Okamoto et al. 2019, QJRMS), Sawada et al. (2019, JGR)
- However, few studies in global DA system
1. Objective

- Improve analysis & forecast by assimilating IR ASR in JMA’s **global** system

1. Examine the reproducibility of ASR simulations from JMA global model
 - Okamoto et al. 2021 QJRMS

2. Develop ASR assimilation processings
 - Handle the challenges by developing **Quality Control (QC), Bias Correction (BC), obs error model,**

3. Assess impacts of ASR assimilation relative to CSR assimilation

- Start with **Himawari-8** (and will expand to other Geo/Leo)
2. Development of ASR assimilation
2-1. Quality Control (QC)

QC removes scenes poorly simulated:

- 1. low observed BT (BT13<230K),
- 2. high inhomogeneity (standard deviation BT13>5K),
- 3. thick ice,
- 4. large land sensitivity,
- 5. large CA (CA-QC),
- 6. large O-B,
- 7. large cloud Jacobian

⇒ O-B becomes more symmetric (and Gaussian) after QC

Cloud effect parameter:
\[CA = \frac{|B - B_{clr}| + |O - B_{clr}|}{2}, \]
where \(B_{clr} \) is clear-sky first-guess (Okamoto et al. 2014, QJRMS)

Ob vs O-B

Num of samples rejected by each QC
2. Development of ASR assimilation

2-2. Bias Correction (BC)

- **BC**: Apply variational BC (VarBC) to mainly correct the negative O-B
 - Add CA and CA^2 to CSR predictors
 - To avoid excessive correction, CA-QC excludes samples that could be substantially affected by model bias

- Remaining bias can be negligible because of large obs error assigned
2. Development of ASR assimilation

2-3. Obs error covariance model

- O-B variability can be predicted with a simple function of CA
- Obs error standard deviation (SD) is modeled with a linear stepwise function of CA
 - Geer & Bauer (2011, QJRMS); Okamoto et al. (2014, QJRMS)
- Evident inter-band error correlation, increasing with CA
 - Account for cloud-dependent obs error correlation by selecting one, according to CA, from 3 correlation matrices precalculated

O-B SD and obs error SD model at band10

Obs Error SD model

Obs error correlation

0<CA<0.5

0.5<CA<1.5

CA>1.5
3. Data assimilation experiment

Assimilation system
- Operational global DA system of JMA (as of Dec. 2019)
- Hybrid-4DVar
 - 4DVar + LETKF, TL959L100 (20km grid), MW ASR assimilation

Obs Configuration
- CNTL: Same as the operational configuration (Himawari-8/CSR)
- TEST: Assimilate Himawari-8/ASR, instead of CSR
- NoHim: Exclude Himawari-8 radiances
 - All the WV bands (8,9,10), 220km thinning
 - CSR is assimilated for GOES and MSG in all the experiments
 - RTTOV13.0

Period
- Analysis: 10 Jul. – 17 Sep. 2020
- Forecast: 12UTC, 20 Jul. – 6 Sep. 2020,
3. DA experiment

3-1. Change in number of used data and humidity analysis

- ASR is more numerous and homogenous than CSR: 21,840 vs 7,802 (2.8 times)
- ASR increase mid- and upper tropospheric humidity more than CSR
 - More effectively reduce dry bias than CSR
3. DA experiment

3-2. Impact on O-B fit : TEST vs CNTL

- Global O-B fit difference
 - Negative means ASR better improve background than CSR
 - Significant improvement
 - Mid- and upper-tropospheric humidity
 - MHS, RAOB
 - Tropospheric Temperature IASI, GNSS-RO
 - Degradation in stratospheric temperature (and wind)
 - AMSU-A, RAOB
3. DA experiment
3.3. Impact on forecasts

- Forecast improvement rate (TEST vs CNTL)
 - Warmish (Positive) shade means ASR improves forecast over CSR

- Significant improvement in upper-tropospheric humidity and temperature up to 48-h especially in Tropics

- Significant degradation in stratospheric temperature and wind
4. Additional impact studies
cloud-dependency of BC

- Examine how to represent bias in VarBC
 - Ref: CSR BC = $c_1 \cdot \text{Oclr} + c_2 \cdot 1/\cos(\theta) + c_3$
 - TEST: $\text{BC} = \text{BC1} + c_4 \cdot \text{CA} + c_5 \cdot \text{CA}^2$
 - BC1: Equivalent to CSR: $\text{BC} = c_1 \cdot \text{Bclr} + c_2 \cdot 1/\cos(\theta) + c_3$
 - Coefficients calculated from samples with O-Bclr > 1K
 - \rightarrow Significant degradation
 - BC2: Obs-based predictors (Otkin & Potthast 2019):
 $\text{BC} = c_1 \cdot \text{O} + c_2 \cdot \text{O}^2 + c_3 \cdot \text{O}^3 + c_4 \cdot 1/\cos(\theta) + c_5$
 - \rightarrow Equivalent skills as TEST

Cloud-dep predictors are important in the presence of significant O-B bias
4. Summary and plans

- Developed IR all-sky radiance assimilation in global data assimilation system
 - Cloud-dependent QC, BC and obs error covariance model
- ASR assimilation, relative to CSR assimilation
 - Significantly increase observations assimilated by 2.8 times
 - Increase mid- and upper tropospheric humidity to better alleviate dry bias than CSR assimilation does
 - Improve short-range forecast (~48h) of Q, T and W in the mid- and upper troposphere, especially in Tropics
 - Degrades stratospheric T and W
- Sensitivity experiments
 - Cloud-dep BC predictors are essential in the presence of large (negative) O-B bias
 - Obs error correlation and cloud-dep SD are important, but cloud-dependency of correlation is not so much.

- Ongoing studies and Plans
 - Investigate the degradation in upper stratospheric T and W
 - Assess impacts of ASR from GOES and MSG
 - Extend the development to hyperspectral IR sounders