The Frequency-Domain Characterization of Cosmic Ray Intensity Variations Before Forbush Decreases Associated with Geomagnetic Storms

Ye Qian\(^1\)(yeqian@cma.gov.cn), Wang Cong\(^1\), He Fei\(^2\), Xue Bingsen\(^1\), Zhang Xiaoxin\(^1\)

\(^1\)National Satellite Meteorological Center, China Meteorological Administration, Beijing, China
\(^2\)Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

AOMSUC-12, Nov. 11-16, 2022
1. Motivation: forecast ICMEs-driven geomagnetic storms

2. Method: how to quantify variations

3. Results: validate prediction performance

4. Summary
Motivation

Interplanetary Coronal Mass Ejections (ICMEs)

strong geomagnetic storms

Effects

random

hard to forecast

Aurora

Global Navigation Satellite System (GNSS) disruption

Geomagnetically Induced Currents (GICs)
Motivation

- ICME shocks cause **Cosmic Ray Intensity (CRI) variations** (pre-increase, pre-decrease, anisotropy)

![Image showing cosmic ray intensity variations]

Almost half of the ICMEs-driven storms during 2008-2016 have **precursors**

![Image showing precursor signal of CRI]

The precursor signal of CRI appeared 6-9 hours before storm sudden commencement

[Lingri et al., 2019]
[Munakata et al., 2000]

- Such variations can be used as **precursors** of ICMEs-driven geomagnetic storms
Method

GOAL: quantify both amplitude and frequency variations in CRI

PROBLEM: CRI is a complex signal
- modulated by many factors, ICME is just one of them

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
- a self-adaptive empirical signal decomposition tool
- decomposes a signal into several intrinsic mode functions (IMFs), and a residual function (Res.) by a sifting process
- different IMFs have different oscillation frequencies

proxy signal = IMF4 + IMF5
Method

GOAL: quantify both amplitude and frequency variations in CRI

Continuous Wavelet Transforms (CWT)

Time Domain

Time-Frequency domain

both Amplitude and Frequency variation
Method

GOAL: quantify both amplitude and frequency variations in CRI
1. **IF the slope of precursor** reaches the local maximum
2. **IF the maximum of the precursor** surpass benchmark
Results

Prediction performance

43 in 65 events (66%) are successfully predicted.

Leading time: concentrates on 0-20 hours with an average of 22.2 hours
Results

Ground Level Enhancement (GLE)

GLE excluded: **43 in 45 events (96%)** are successfully predicted.
Summary

1. Cosmic Ray Intensity is a potential precursor of ICMEs-driven geomagnetic storm

2. The successful prediction ratio of our method is 66%, and if exclude events accompanied by GLE, the ratio rises to 96%.

3. In all successfully predicted cases, the leading time concentrates on 0-20 hours with an average of 22.2 hours.
Thanks for your attention.

Question?