(2) 地震活動

ア. 地震の発生場所の詳細及び 2024 年 8 月 8 日以降の地震活動

2025年1月13日21時19分に、日向灘の深さ36kmで M6.6の地震(最大震度5弱)が発生した。 この地震は、発震機構(CMT解)が西北西-東南東方向に圧力軸を持つ逆断層型で、フィリピン海プ レートと陸のプレートの境界で発生した。

この地震の震源付近(領域b)では、2024年8月8日にM7.1の地震(最大震度6弱)が発生し、 地震活動が活発となっていたが、時間の経過とともに地震回数は減少していた。この中で今回の地震 が発生し、一時的に地震活動が活発となっていたが、時間の経過とともに地震の発生数は減少してき ている。

1994年10月以降の活動をみると、今回の地震の震源付近(領域b)では、M6.0以上の地震が今回の地震を含めて5回発生している。1996年10月19日に発生したM6.9の地震(最大震度5弱)では、高知県の室戸市室戸岬及び土佐清水で14cm、宮崎県の日南市油津及び鹿児島県の種子島田之脇で9 cmの津波を、同年12月3日に発生したM6.7の地震(最大震度5弱)では、宮崎県の日南市油津及び高知県の土佐清水で12cmの津波を観測した(平常潮位からの最大の高さ)。また、2024年8月8日に発生したM7.1の地震(最大震度6弱)では、宮崎県の宮崎港で51 cm、日南市油津で40 cmの津波を観測した。

イ.発震機構

1994年10月以降に発生した地震の発震機構(CMT解)分布、発震機構の圧力軸及び張力軸の分布を 図2-4に示す。また、図2-4の領域c内の地震の発震機構の型の分布、圧力軸及び張力軸の向き の分布を図2-5に示す。

今回の地震の震央付近では、逆断層型の地震が多く見られ、発震機構の圧力軸の向きは西北西-東 南東方向の地震が多い。今回の地震(M6.6)は、発震機構が西北西-東南東方向に圧力軸を持つ逆断 層型であり、これまでの地震の傾向と調和的である。

図2-4 発震機構分布図(左)、発震機構の圧力軸の分布(中)及び張力軸の分布(右) 期間:1994年10月1日~2025年1月31日、深さ:0~100km、Mすべて、発震機構はCMT解による(震源の位置に 表示)。逆断層型の地震を青色、正断層型の地震を赤色、横ずれ断層型の地震を緑色で表示(Frohlich (2001)に よる分類)。ピンク色の丸囲みで表示している地震は2025年1月の地震。紫色の実線は南海トラフ巨大地震の想 定震源域を示す。

図2-5 図2-4の領域 c内の地震の発震機構の型の分布(左)及び発震機構の圧力軸及び張力軸の 方位分布(右)

発震機構の型の分布は、逆断層型の地震を青色、正断層型の地震を赤色、横ずれ断層型の地震を緑色で表示 (Frohlich (2001)による分類)。ピンク色の丸囲みで表示している地震は2025年1月の地震。

ウ. 近地強震波形による震源過程解析(暫定)

2025 年 1 月 13 日 21 時 19 分(日本時間)に日向灘で発生した地震(M_{JMA}6.6)について、国立研究開発法 人防災科学技術研究所の強震観測網(K-NET、KiK-net)の近地強震波形を用いた震源過程解析を行った。 破壊開始点は、この地震の約 1 秒前にほぼ同じ場所で発生した地震の震源の位置(31°50.2′N、131° 35.7′E、深さ 34km、気象庁による)とした。

	発生時刻	震源
破壞開始点	1月13日21時19分31.6秒	31°50.2′N、131°35.7′E、深さ 34km
M _{JMA} 6.6の地震	1月13日21時19分32.8秒	31°49.7′N、131°34.2′E、深さ 36km

断層面は、気象庁 CMT 解の 2 枚の節面のうち、走向 202°、傾斜 28°、すべり角 83°の節面を仮定して解 析した。最大破壊伝播速度は 2.9km/s とした。理論波形の計算には、Koketsu et al. (2012)の結果から設 定した地下構造モデルを用いた。主な結果は以下のとおり(この結果は暫定であり、今後更新することがあ る)。

- ・主なすべり域の大きさは走向方向に約30km、傾斜方向に約35kmであった。
- ・主なすべりは破壊開始点から北東側の浅い領域に広がり、最大すべり量は 0.5m であった(周辺の構造から剛性率を 43GPa として計算)。
- ・主な破壊継続時間は約15秒であった。
- ・モーメントマグニチュードは6.7であった。

結果の見方は、https://www.data.jma.go.jp/eqev/data/sourceprocess/about_srcproc.html を参照。

作成日:2025/01/24

図2-10 観測波形(黒:0.05Hz-0.2Hz)と理論波形(赤)の比較

謝辞 国立研究開発法人防災科学技術研究所の強震観測網(K-NET、KiK-net)を使用しました。 参考文献

Koketsu, K., H. Miyake and H. Suzuki, Japan Integrated Velocity Structure Model Version 1, paper no. 1773. Paper Presented at the 15th World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Lisbon, 24-28 Sept. 2012.

エ.過去の地震活動

1919年以降の活動をみると、今回の地震の震央周辺(領域 c) ではM6.0以上の地震が時々発生している。1968年4月1日に発生した「1968年日向灘地震」(M7.5、最大震度5)では、負傷者57人、住家被害7,423棟などの被害が生じた(被害は「日本被害地震総覧」による)。この地震により、大分県の蒲江で240cm(全振幅)の津波を観測した(「日本被害津波総覧」による)。

