資料

資料1 南極各国基地におけるオゾン全量(2013年)

図S-1: 南極各国基地におけるオゾン全量(2013年)

昭和基地(印)、ハレー(印)、ベルナドスキ/ファラデイ(×印)、ロゼラ(印)およびア ライバルハイツ(印)における2013年8~12月のオゾン全量。ハレー、ベルナドスキ/ファラデイ、 ロゼラの観測値は英国南極研究所提供。アライバルハイツの観測値はニュージーランド水・大気研究 所提供。オゾンホールの目安である220 m atm-cmを緑破線で示した。 付録

付録1 解析に使用した観測資料

付録1-1 地上観測データ(オゾン)¹⁰

この報告で使用した地上観測データは、世界気象機関(WMO)の世界オゾン・紫外線資料セン ター(WOUDC、カナダ・トロント)に登録されている 2013 年 12 月までのオゾン全量観測、オ ゾン反転観測、オゾンゾンデ観測データである。2009 年から 2013 年のオゾン観測データが、 WOUDC に登録されている地点を図 A1-1 に示す。

オゾン全量観測データおよび反転観測データ:

気象庁のドブソンオゾン分光光度計によるオゾン全量観測およびオゾン高度分布観測(反転観測) の開始は、1957年つくば、1958年札幌および鹿児島、1961年南極昭和基地、1974年那覇である (鹿児島での観測は2005年3月に終了した)。また1994年から南鳥島においてブリューワー分光 光度計によるオゾン全量観測を実施している。南鳥島の2013年のオゾン全量データは速報値であ る。なお、各地点の反転観測データについては、測定データの不確実性の再評価を行い、オゾンプ ロファイルの最新導出アルゴリズムで処理(Miyagawa *et al.*, 2009)したものを利用した。

¹⁰ オゾン観測の測器・原理については、下記の気象庁ホームページを参照のこと。 http://www.data.jma.go.jp/gmd/env/ozonehp/3-15ozone observe.html

オゾンゾンデ観測データ:

気球を用いたオゾン高度分布観測(オゾンゾンデ観測)を1966年に南極昭和基地で、1968年に 札幌、つくば、鹿児島で、1989年に那覇で開始した(鹿児島での観測は2005年3月に終了した)。 なお、札幌とつくばでは2009年12月、那覇では2008年11月、南極昭和基地では2010年4月 に、オゾンゾンデをKC型からECC型へ変更した。

【KC型から ECC 型オゾンゾンデの変更にともなうオゾン分圧参照値の補正について】

これまで、オゾンゾンデに関する国際比較実験(JOSIE1996(WMO, 1998) JOSIE2000(WMO, 2004) BESOS2004 (Deshler *et al.*, 2008))によって、KC型とECC型の比較実験が実施されており、両者の出力するオゾン分圧には系統的な差があることが報告されている。また、気象庁が実施した両者比較実験でも、同様な差があることがわかっている。これらによると、KC型では、下部対流圏においてオゾンが実際の値よりも過少評価されており、ECC型に比べて少なくなる傾向(バイアス)がある。このため、指定気圧面ごとのオゾン分圧の参照値との比較図(図 2-2、図

3-4)において、参照値で使用されるKC型データのバイアスを補正したうえで比較している(表 A1-1)。

気圧 (hPa)	1000	925	850	700	600	500 ~ 1
補正係数	1.18	1.15	1.13	1.08	1.04	1.00

表 A1-1:参照値で使用される KC 型データの指定気圧面別の補正係数

付録1-2 地上観測データ(紫外線)¹¹

気象庁では、ブリューワー分光光度計を用いた波長別の紫外線観測を、1990年1月よりつくば で、1991年1月より札幌、鹿児島、那覇で開始した(鹿児島での観測は2005年3月で終了した)。 これは、オゾン層と密接な関連があり、生物に有害なB領域紫外線(UV-B)の地表到達量の状況 を把握するためである。観測している波長域は、地表に到達し、かつオゾン量の変動の影響を受け て大きく変化する範囲を中心とする290 nm から325 nm までである。また、気象庁は国立極地研 究所と共同で、南極昭和基地で1991年2月から研究観測を開始し、1994年2月からは気象庁が 定常観測を実施している。なお、つくばと昭和基地では広帯域紫外域日射計によるUV-B全量も同 時に測定している。

なお、気象庁における波長別の紫外線観測は世界でも先駆的であり、当初、較正方法が確立され ていなかった。このため、第 部第1章の「図 1-2 紅斑紫外線量の年積算値の経年変化」及び「図 1-3 日最大UVインデックス8以上の年積算日数の経年変化」の計算では、札幌とつくばの一部の 期間については、紫外線の観測データと全天日射量等の気象要素との比較検討に基づいて次のよう な補正量を適用している。

・札幌 観測開始~1994年1月 - 5%

・つくば 観測開始~1997年12月 +5%

¹¹ 紫外線観測の測器・原理については、下記の気象庁ホームページを参照のこと。 http://www.data.jma.go.jp/gmd/env/uvhp/3-45uvb_observe.html

付録1-3 衛星観測データ(オゾン)

衛星による観測データとしては、ニンバス7、メテオール3、アースプローブの3機の衛星のオ ゾン全量マッピング分光計(TOMS; Total Ozone Mapping Spectrometer)のデータと、オーラ 衛星のオゾン監視装置(OMI; Ozone Monitoring Instrument)のデータを主に使用した。ニンバ ス7とメテオール3両衛星のデータについては、アースプローブ衛星に用いられている処理方法 (ver. 8)で計算されたものを利用した。また、アースプローブ衛星のTOMSデータは2007年8 月に公開された修正版を利用した。オーラ衛星のOMIデータについてはver.8.5のデータに地上 観測との差異がみられたため(図A1-2)2005年1月から2007年11月分まではver.8を用いた。 2007年12月以降はver.8.5のデータのみしか入手できないためver.8.5を使用している。ただし、 メテオール3衛星以後アースプローブ衛星による観測が始まるまでの一部の期間、およびオゾンの 長期変化に関連した解析の一部については、ノア衛星搭載のタイロス実用型鉛直サウンダ (TOVS; TIROS Operational Vertical Sounder)の高分解能赤外放射計による世界のオゾン全量 データおよび太陽光後方散乱紫外線計(SBUV/2; Solar Backscatter UltraViolet)による世界の オゾン全量データを使用した。各データとその使用期間は表A1-2のとおり。なお、本文中の図の キャプションでは、TOMS および OMI によるオゾン全量データを用いたことが明らかな場合は、 衛星・装置名は記載せず単に「NASA 提供のデータをもとに気象庁で作成」とした。

なお、解析データとしては利用していないが、OMI ver. 8.5 のオゾン全量のバイアス補正を行うために、NASA が作成した SBUV(ver. 8.6) Merged Ozone Data Sets を利用した(NASA, 2012)。

本国海洋大気厅 (NOAA; National Oceanic and Atmospheric Administration)						
衛星名	ニンバス 7	メテオール 3	アースプローブ	オーラ	ノア	ノア
国/機関	米国/NASA	旧・ソ連	米国/NASA	米国/NASA	米国/NOAA	米国/NOAA
観測装置	TOMS	TOMS	TOMS	OMI	TOVS	SBUV/2
名						
期間	1978.11 -	1993.5 -	1996.7 -	2005.1 -	1995	1995
	1993.4	1994.11	2004.12			

表 A1-2:解析に用いた衛星データ

米国航空宇宙局 (NASA; National Aeronautics and Space Administration)

衛星によるオゾン全量観測データの地上観測との比較

衛星データの長期的な安定性をみるため、TOMSおよびOMIによる観測値と、北緯30度から北 緯60度の領域にある地上の観測地点における観測値との月平均値による比較結果を図A1-2に示す。 これによれば、1979~1993年のニンバス7衛星のTOMSデータは、地上観測値に比べて約1%値が 高い傾向である。1993年5月以降のメテオール3およびアースプローブ衛星のTOMSデータは、ば らつきが大きく、概ね地上観測値に比べて低い。一方、2005年以降、TOMSの後継としてOMIの データを利用しているが、バージョン変更後のデータであるOMI ver. 8.5のデータは、ばらつきは 少ないものの、-2~-1%程度の地上観測値との偏差がある。ver. 8.5とver. 8のデータの存在する 期間(2005年1月~2007年11月)で、帯状平均した緯度ごとのデータについて比較すると、両者の オゾン全量の差は、緯度や月によって大きさが一致する傾向がある(「オゾン層観測報告:2008」 付録1-2図A1-5参照)。この期間のデータから月別・緯度別に両者間のバイアス補正値を算出した。 しかし、OMI ver. 8.5のデータと北半球中緯度の地上観測との差の傾向が、2007年12月以後はそれ 以前より差が小さくなっており、傾向が異なっている。このため、NASAが作成したSBUV(ver. 8.6) Merged Ozone Data Sets(以下、マージデータとする)の帯状平均値を用いてバイアス補正値の 調整を行った。具体的には、2005年1月~2007年11月のマージデータとOMI ver. 8の差の平均と、 2007年12月~2011年のマージデータとOMI ver. 8.5 (バイアス補正済)の差の平均が同一となる ように、2007年12月以降のOMI ver. 8.5 (バイアス補正済)データを緯度毎にさらに補正した。本 報告では、緯度帯別の長期的な変化傾向を解析する際には、2007年12月以降のver. 8.5のデータに マージデータで調整したバイアス補正を適用した。また、1993年5月~1994年11月の衛星データ(メ テオール3衛星によるオゾン全量)は、オゾン全量の地上観測値からの差のばらつきが大きいため、 長期変化傾向の計算から除外している。

図 A1-2: 衛星データと地上観測データの比較

北半球中緯度帯(北緯 30 度 - 60 度)の TOMS および OMI による観測値(月平均値)と地上観測 値との偏差(%)の推移。地上の観測地点に対応する衛星データを求め比較した。オーラ衛星期間の は OMI ver. 8、 は OMI ver. 8.5 のデータ。各月の比較地点数は 20~50 地点。

付録2 長期変化傾向の算出における既知の自然変動成分の除去について

オゾン全量はさまざまな要因によって変動す る。一例として、図A2-1aにつくばにおける1970 年から2013年までのオゾン全量月平均値の推移 を示す。月平均値の推移には明瞭な季節変動がみ られ、年平均値の20~30%程度の振幅をもってい る。この時系列から季節変動成分を取り除いたオ ゾン全量の変化を図A2-1bに示す。この経年変化 には、2~3年や10年程度のほぼ周期的な変動成 分が含まれており、オゾンの長期変化傾向(トレ ンド)を正確に求めるには、季節変動に加え、こ れらの変動成分をオゾンの時系列データから除 去する必要がある(吉松ほか,2005)。

オゾン全量の変動に影響を及ぼす季節変動以 外の要素として、約11年周期の太陽活動(図 A2-1c)、約2年周期のQBO(図A2-1d)がある。 そのほか、大きな火山噴火等で生じる大気混濁も オゾン全量の変動に影響を及ぼす。なお、大きな 火山噴火等で生じる大気混濁の影響については、 各地点の直達日射量から算出した大気混濁係数 の13か月移動平均値を指標とする。

図A2-1eには季節変動、太陽活動の影響、およ びQBO の影響を取り除いたオゾン全量の時系 列を示す。この時系列は、大気中のオゾン層破壊 物質の濃度の変化にともなう変動成分と、未知の 要因による変動成分が重なった時系列と考える ことができ、この時系列からオゾンのトレンド (長期変化傾向)を求める。

実際のオゾン量の観測データから、各自然変動 成分を除去した時系列データを求める手順は以 下のとおり。

- オゾン全量の月平均値から月別累年平均値 を差し引き、全期間の平均値を加えることに より季節変動を除去した時系列データを作 成する(図A2-1b)。
- 2)オゾン全量の季節変動除去した値を目的変数 とし、太陽電波フラックスの13か月移動平均 値、QBOの7か月移動平均値、およびトレンド

図A2-1:つくばにおけるオゾン全量の変化と各自 然変動要因との関係

(a) 月平均値、(b) 季節変動除去値の時系列、 (c) 季節変動除去値の49か月移動平均値(太線) と太陽電波フラックスの13か月移動平均値(破 線:時間ラグを設定)、(d) 季節変動除去値の 13か月移動平均値(太線)とQBOの7か月移動 平均値(破線:時間ラグを設定)、(e)季節変動、 太陽活動およびQBOの影響を除去したオゾン全 量時系列(太線)。

成分を説明変数とした重回帰式を求める(移動平均した太陽電波フラックス、QBOのいずれも 地点ごとにオゾン全量との相関が最も高くなるように時間ラグを設定。図A2-1c、d)

3) この回帰式を用いて、太陽の活動を示す太陽電波フラックスおよびQBOの変動と対応するオゾ ン全量の成分を算出し、目的変数からこれらの成分を除去した時系列を作る(図A2-1e)。

付録3 オゾン量の長期変化傾向の評価方法について

EESCフィッティングによる長期変化傾向の評価

オゾン量は、さまざまな周期の自然変動に伴って変動している。このため、オゾン量の長期的な 変化傾向を抽出するには、観測データから既知の周期的な自然変動を除去する必要がある(「付録 2」参照)。こうして得られるオゾン量は、1980年頃から大きく減少し、これは主にオゾン層破壊 物質によりもたらされたことが明らかになった。オゾン量の変動に与えるオゾン層破壊物質の影響 をみるために、EESC(Newman *et al.*, 2007:等価実効成層圏塩素。巻末「用語解説」参照)の 時系列(図A3-1)と関連づけて解析がなされている。図A3-2には、既知の自然要因による変動成 分を除去した世界の地上観測によるオゾン全量月平均値(細線)とEESCの変化曲線に対応するオ ゾンの変化成分(なめらかな実線)が描かれている(EESCはこの期間、1990年代後半付近にピー クを持つ、上に凸の時系列となるが、その符合を反転してフィッティングされている)。このよう に、EESCの変化曲線を当てはめることで、オゾン量の経年変化のうちオゾン層破壊物質の影響に よる変化成分を取り出して理解することができる(この手法を「EESCフィッティング」と呼ぶ¹²)。

本報告書第1部第1章1-2「世界のオゾン層の長期変化」では、中緯度用のEESCを用いて、以下の2 通りでEESCフィッティングによるオゾンの長期変化傾向を表現する。最も多いのは、フィッティン グ曲線上の1979年のオゾン量(図A3-1の Y1979)に対する、2013年のオゾン量(Y2013)の変化の割合 (=(Y2013 - Y1979)/Y1979×100(%))として示し、「2013年オゾン全量の1979年に対する変化

1980年を1とした相対的な値として示した。WMO(2011)と同様に、対流圏から成層圏に入っ たオゾン層破壊物質が中緯度域まで塩素・臭素原子として到達するまでの時間を3年として算出。 また、臭素原子のオゾン破壊効率を塩素原子の60倍とした。EESCの数値は米国航空宇宙局 (NASA)から提供。

自然変動要因による変動成分を除去した世界の地上観測によるオゾン全量月平均値と EESC フィッティング曲線を模式的に示したもの。 は EESC フィッティング曲線上の値を示して いる。

¹² 計算手順の詳細は「オゾン層観測報告:2008」『解説3 トレンド(長期変化傾向)の評価』を参照のこと。

の割合(%)」などのように表現する。つまり、オゾン層の破壊が進んだ1980年代直前の1979年の 値と比較して、オゾン層破壊物質の影響を考慮した長期的なオゾン量の減少の割合を示している。第 二に、1980年代の10年間の変化量を、「1980年代の変化の割合」として1979~1989年(*Y*₁₉₈₉)に おける変化量(図A3-1のの線の傾きに相当。単位%/10年)により表現する場合がある。

折れ線フィッティングによる長期変化傾向の評価

EESCフィッティングの変化曲線(図A3-2)は、EESCの濃度の経年変化に比例して変動することから、1980年代から1990年代半ばまでの「大きな減少」と、1990年代半ば以降の「緩やかな増加」に変化傾向を分類できる。領域平均したデータについては、概ねこのような変化傾向が当てはまるが、個別の観測地点のデータでは、個々の地点の自然変動などの要因によって必ずしも当てはまらない場合がある。このため、個別の観測地点のデータについては、EESCフィッティングの代わりに、EESC が最大値となる1996年末を転換点¹³とした折れ線フィッティングによるトレンド解析から「2013年オゾン全量の1979年に対する変化の割合」、「1980年代の変化の割合」などの長期変化傾向を算出した(図A3-3。折れ線フィッティングについては付録4参照)。図A3-3で、 Y_{1979} を折れ線上の1979年の値、 Y_{2013} を折れ線上の2013年の値とすると、2013年のオゾン量(Y_{2013})の1979年に対する変化の割合を($=(Y_{2013} - Y_{1979})/Y_{1979} \times 100(\%)$)として求めた。また、1980年代の変化傾向は折れ線の前半部直線の傾きから求めた(単位は%/10年)。

図A3-3: 折れ線フィッティングによるトレンド解析 自然変動要因による変動成分を除去した国内官署の地上観測によるオゾン全量月平均値と折 れ線フィッティングによる直線を模式的に示したもの。 は折れ線上の値を示している。

なお、本報告書において、折れ線フィッティングを使用して長期変化傾向を算出した図表は下記の とおり。

図I2-5、表I2-1、表I2-2	【p.15~16:日本上空のオゾン全量の長期変化傾向】
図I2-6上段	【p.18:日本上空のオゾン鉛直分布の長期変化傾向】
図I3-10上段	【p.27:南極昭和基地上空のオゾンの長期変化傾向】

最近の変化傾向の評価

¹³ オゾン量の変化傾向が転換する年は、1990年代半ば頃だが地点や要素によって異なるが、統一して処理するため、EESCの変化傾向が転換する年(1996年末)を転換点として用いた。つまり、EESCが増加している1979~ 1996年とEESCが減少する1997年以降に分けて計算することとした。

世界のオゾン量の長期変化傾向を求めるために使用したEESCの値は、1996年末にピークとなり、 以後減少している。このため、本報告書では1997年以降のオゾン量の変化を「最近の変化傾向」 として評価した。具体的には、世界のオゾン全量(第I部第1章1-2節)では、1997年以降のデータに 直線回帰を当てはめて変化傾向を算出した。国内および南極昭和基地の地点(第I部第2章2-2節、3-2 節)では、折れ線回帰の後半部の直線から1997年以降のトレンドを算出した。

観測データの選別について

第 部第1章1-2節「世界のオゾン層の経年変化と長期変化傾向」で使用する地上観測地点の選択 にあたっては、毎月の月平均値と衛星による観測データとの全期間を通した比較において、データ の精度に大きな問題がないと判断されることを基準とした。また、観測機器の変更等により観測デ ータに不自然な段差がみられる場合には、その観測データに補正を施したのち、解析を行った。衛 星観測データの扱いについては付録1-3を参照。

付録4 折れ線フィッティングの計算について

「折れ線フィッティング」は、以前よりオゾン量の長期トレンドの研究で用いられているが、本 報告書ではReinsel *et. al* (2002)による定式化を参考にした。なお、「オゾン層破壊の科学アセスメ ント:2010」(WMO, 2011)では、EESCによるトレンド値とともに、折れ線フィッティングに よるトレンドの値も併記されており、重要な指標として扱われている。

時刻 t = T₀(月単位)でトレンド(年トレンド)がb₁からb₂だけ変化する「折れ線トレンドモデ ル」を(1)式に示す(図 A4-1)、y_tは時刻 t における目的変数(ここでは既知の周期的変動を除 去したオゾン量) b₀は切片、b₁、b₂は偏回帰係数。 ε_t は誤差項でここでは正規分布に従うとする。 $x_{1t} \ge x_{2t}$ が説明変数となる。

 $y_t = b_0 + b_1 x_{1t} + b_2 x_{2t} + \epsilon_t (t = 1, 2, \dots, T)$ · · · · · · · · · (A4-1)

図A4-1: 折れ線トレンドモデルの模式図 時刻 t=1~T₀までが前半部、t=T₀+1~T までが後半部となる。

(A4-1)式から最小二乗法によって切片、偏回帰係数の最良不偏推定量を求め、それぞれ $\widehat{b_0}$ 、 $\widehat{b_1}$ 、 $\widehat{b_2}$ とすると、 $\widehat{b_1}$ は折れ線の前半部の傾き、 $\widehat{b_2}$ は後半部の「傾きの変化」となり、 $\widehat{b_1} + \widehat{b_2}$ が後半部の 傾きとなる。Reinsel *et. al* (2002)では、誤差項について第1次の自己回帰モデル(AR1)を用いて いるが、本報告書では誤差項は正規分布であると仮定して計算した。また、折れ線の転換点(T₀) は、本報告書で用いる EESC の値が最大となる 1996 年 12 月としている。