『気候変動監視レポート 2023』正誤表

対象	正	誤
トピック I (p. 1)	#日本 # # # # # # # # # # # # # # # # # #	
第 1. 3. 1 項 (4) (p. 23)	850hPa 気温では、	850hPa 気温 <mark>を</mark> では、
第 2. 3. 1 項 (p. 49)	北半球及び南半球 <mark>ともに</mark> 最も高い値となっ た (図 2.3-2)	北半球及び南半球 <mark>はもまた</mark> 最も高い値となった(図 2.3-2)
表 2. 3-2 (p. 54)	1927~2023 年の観測値から算出した、大都市における変化率 (100 年あたり) 及び都市化の影響が比較的小さいとみられる 15 観測地点 (表 2.3-1 参照) の平均変化率を示す。いずれも信頼水準 90%以上で統計的に有意。	1927~2023 年の観測値から算出した、大都市における変化率(100 年あたり)及び都市化の影響が比較的小さいとみられる 15 観測地点(表 2.3-1 参照)の平均変化率を示す。斜体字は信頼水準 90%以上で統計的に有意な変化傾向が見られないことを意味する。
第 2. 4. 3 項 (4) (p. 60)	(いずれも信頼水準95%以上で統計的に有意)	(それぞれ年最大 24 時間は信頼水準 99% 以上、年最大 48 時間及び 72 時間降水量は 信頼水準 95%以上で統計的に有意)
第 2. 9. 1 項 (p. 73)	エルニーニョ監視海域の海面水温は、2020 年 5 月から 2023 年 1 月にかけては基準値 に近い値かそれよりも低い値、	エルニーニョ監視海域の海面水温は、2020 年5月から2023年1月にかけては基準値に 近い値かそれも低い値、
第 2. 10 節 (p. 75)	国内 13 地点の GPS を併設した検潮所の地盤上下変動を補正したデータでは、海面水位が 2006~2018 年の期間に 1 年あたり 3.4 [1.1~5.6] mm 上昇した。	国内 13 地点の GPS を併設した検潮所の地盤 上下変動を補正したデータでは、海面水位 が 2004~2018 年の期間に 1 年あたり 3.4 [1.1~5.6] mm 上昇した。

第 2.10 節 (p. 75)	日本沿岸の海面水位上昇率は、2006~2018年の期間で、図 2.10-1の16地点では1年あたり2.9 [0.8~5.0] mm、図2.10-2の地盤変動補正後の13地点では1年あたり3.4 [1.1~5.6] mmであった。	日本沿岸の海面水位上昇率は、2006~2018 年の期間で、図 2.10-1 の 16 地点では 1 年 あたり 2.9 [0.3~5.5] mm、図 2.10-2 の地 盤変動補正後の 13 地点では 1 年あたり 3.4 [1.1~5.6] mm であった。
第 2.10 節 (p. 76)	図2.10-2 日本沿岸の年平均海面水位の経 年変化(2004~2023 年)	図 2.10-2 日本沿岸の年平均海面水位の経 年変化(1906~2023 年)
第 2. 11. 1 節 (p. 78)	その後南半球の冬にかけて海氷は増加し、 9月7日に年最大値(1754万km2)となり、 年最大値としては 1979年の統計開始以降 で最も小さかった(図2.11-2、図2.11-3の 各右図)。	その後南半球の冬にかけて海氷は増加し、9 月7日に年最大値(1754万km²)となり、年 最大値としては1979年の統計開始以降で最 も大きかった(図2.11-2、図2.11-3の各右 図)。
第 2. 12. 1 節 (p. 81)	解析期間は、東経 137 度が 1994 年~2023 年、東経 165 度が 1992 年~2022 年、北緯 24 度が 1992 年~2023 年。	解析期間は、東経 137 度が 1994 年〜2023 年、東経 165 度が 1992 年〜2022 年。