36. Bandaisan

Overview of Bandaisa, taken from the west side on September 21, 1984. Courtesy of Asia Air Survey Co., Ltd.

Summary

Bandaisan is located at the north of Lake Inawashiro, Fukushima Prefecture. It is an andesitic stratovolcano with a base diameter between 7 and 10 km, and a relative height of approximately 1 km. The Numanotaira crater is surrounded by peaks such as Akahaniyama, Obandai, and Kushigamine, forming a conical volcanic edifice. The current topography is the result of repeated collapses. The 1888 collapse and debris avalanche, caused by a phreatic eruption, is famous, but there are also debris avalanche deposits such as the Okinajima and Zunashi deposits to the southwest, and corresponding collapsed walls were identified in the volcanic edifice. The SiO$_2$ content is between 56.5 and 64.4 wt %.

Activity of Bandaisan can be divided into two stages, the old and new stages, separated by a period of inactivity (Yamamoto and Suto, 1996). Activity in the old-stage consisted mainly of the formation of Akahaniyama and Kushigamine. Activity in the new-stage included the formation of Kobandaisan, which collapsed in the 1888 eruption, and Obandaisan. During the new stage, Okinajima debris avalanche and pumice flow deposits deposited at the southern foot of the volcano (Chiba et al., 1994; Mimura and Endo, 1997). A volcanic edifice was formed again inside the horseshoe-shaped caldera left by the collapse. Major magmatic eruptions stopped several tens of thousands of years ago, after which activity shifted to phreatic eruptions (Chiba et al., 1994; Yamamoto and Suto, 1996).

All eruptions within recorded history were phreatic. Detailed records are only available for the 1888 eruption. There are small fumaroles in the caldera wall were formed by the 1888 eruption, and the summit Numanotaira crater. A debris avalanche caused by the collapse of the caldera wall also occurred in 1936 and 1954 (Machida and Watanabe, 1988).

Bandaisan is also known as Aizu-Fuji.
Photos

North crater wall, taken from the north side on April 16, 2010 by the Japan Meteorological Agency.

Overview of Bandaisan, taken from Inawashiro Town, southeastern side, on January 10, 2012 by the Japan Meteorological Agency.
Fumarolic area at the bottom of the crater wall, taken on October 5, 2010 by the Japan Meteorological Agency.

Fumarolic area at the top of the crater wall, taken on October 5, 2010 by the Japan Meteorological Agency.

Numanotaira fumarolic area, taken on October 28, 2011 by the Japan Meteorological Agency.

Topography around the Crater

Figure 36-1 Topography around the 1888 crater.

The 1:25,000 Scale Digital Map (Map Image) published by the Geospatial Information Authority of Japan was used to create this map.
Figure 36-2 Topography of Bandaisan.
1:50,000 scale topographic maps (Bandaisan and Azumayama) and digital map 50 m grid (elevation) published by the Geospatial Information Authority of Japan were used.
Figure 34-3 Simplified geological map of Bandaisan (Yamamoto and Suto, 1996). O: Mt. Obandai, A: Mt.Akahani, K: Mt.Kushigamine. The Okinajima Debris Avalanche Deposit includes an intercalated pumice flow deposit.
Chronology of Eruptions

- Volcanic Activity in the Past 10,000 Years

No magmatic eruptions at the Bandai volcano are recorded over roughly the past 25,000 years. All eruptions during that period were phreatic (Yamamoto and Suto, 1996). 4 phreatic eruptions have occurred, including the eruptions in 1888 and 806, within the past 5,000 years, as evidenced by their deposits. These eruptions were separated by intervals of between 1,100 and 1,700 years. In addition to the collapse in 1888, there was also another debris avalanche facing Biwazawa approximately 2,500 years ago.

<table>
<thead>
<tr>
<th>Period</th>
<th>Area of Activity</th>
<th>Eruption Type</th>
<th>Main Phenomena / Volume of Magma</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4ka</td>
<td>Biwazawa upstream area</td>
<td>Magmatic eruption</td>
<td>Tephra fall.</td>
</tr>
<tr>
<td>8.3ka</td>
<td></td>
<td>Phreatic eruption</td>
<td>Tephra fall.</td>
</tr>
<tr>
<td>7ka</td>
<td></td>
<td>Phreatic eruption</td>
<td>Tephra fall.</td>
</tr>
<tr>
<td>6.6ka</td>
<td></td>
<td>Phreatic eruption</td>
<td>Tephra fall.</td>
</tr>
<tr>
<td>5.8ka</td>
<td></td>
<td>Phreatic eruption</td>
<td>Tephra fall.</td>
</tr>
<tr>
<td>5.4ka<</td>
<td></td>
<td>(Collapse)</td>
<td>Biwazawa debris avalanche.</td>
</tr>
<tr>
<td>5.4→→ 2.5ka</td>
<td>Numanotaira to NW flank?</td>
<td>Phreatic eruption</td>
<td>Tephra fall.</td>
</tr>
<tr>
<td>2.6→→ 2.5ka</td>
<td>Numanotaira to NW flank?</td>
<td>Phreatic eruption → (lahar production)</td>
<td>Tephra fall → lahar.</td>
</tr>
<tr>
<td>2.7→→ 2.5ka</td>
<td>Obandaisan east collapse wall and southeast side of Kobandaisan</td>
<td>(Collapse)</td>
<td>Biwazawa debris avalanche (0.1 km³).</td>
</tr>
</tbody>
</table>

Reference documents have been appended with reference to the catalog of eruptive events during the last 10,000 years in Japan, database of Japanese active volcanoes, and AIST (Kudo and Hoshizumi, 2006) for eruptive period, area of activity and eruption type. All years are noted in calendar years. "ka" within the table indicates "1000 years ago", with the year 2000 set as 0 ka.

A←→B: Eruptive events taking place at some point between year A and year B.

A<: Eruptive event before year A.

- Historical Activity

<table>
<thead>
<tr>
<th>Year</th>
<th>Phenomenon</th>
<th>Activity Sequence, Damages, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>806 (Daido 2)</td>
<td>Phreatic eruption</td>
<td>Tephra fall. The eruptive activity occurred at the old crater on the east side of Obandaisan.</td>
</tr>
<tr>
<td>1643 (Kan'ei 20)</td>
<td>Rumbling?</td>
<td></td>
</tr>
<tr>
<td>1655 (Meireki 1)</td>
<td>Rumbling?</td>
<td></td>
</tr>
<tr>
<td>Approximately 1719 (Kyoho 4)</td>
<td>Eruption?</td>
<td></td>
</tr>
<tr>
<td>Approximately 1787 (Tenmei 7)</td>
<td>Eruption?</td>
<td></td>
</tr>
<tr>
<td>1888 (Meiji 21)</td>
<td>Moderate: Phreatic eruption (collapse, lahar)</td>
<td>July 15. Low temperature pyroclastic surge → debris avalanche → tephra fall, lahar. The eruptive activity occurred on the northern side of Obandaisan. It was preceded by several days by weak earthquakes. Rumbling began at approximately 7:00 and 3 strong earthquakes began at approximately 7:30. At approximately 7:45 an explosion occurred, accompanied by a loud boom, followed rapidly by 15 to 20 explosions, with the majority of Obandaisan collapsing. At the same time, there was a blast (pyroclastic surge) and debris flow along Biwazawa, destroying a village at the southeast foot of the volcano. The explosion sound could be heard 50 to 100 km away, and tephra fall reached as far as the coast of the Pacific Ocean. A houseshaped crater opened to the north, and 1.5x10⁸ m³ of deposits were distributed over an area measuring approximately 2.2 km east-west and 2 km north-south. A large debris avalanche (45 to 77 km/hour) occurred, burying 5 towns and 11 villages at the foot of the volcano, killing 461 people (alternatively reported as 477 people). It caused significant damage to houses, mountain forest land, and agricultural land, and dammed up rivers to create lakes, such as Lake Hibara. There were many subsequent lahar flows (volcanic lahar) afterward. (VEI 2)</td>
</tr>
<tr>
<td>Year</td>
<td>Phenomenon</td>
<td>Activity Sequence, Damages, etc.</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>1897 (Meiji 30)</td>
<td>Rumbling</td>
<td>July 5 to July 8.</td>
</tr>
<tr>
<td>1938 (Showa 13)</td>
<td>Debris avalanche</td>
<td>May 9 and 15. Crater wall collapse caused debris avalanche. The collapse extended approximately 3 km, with a surface area of over 2.3×10^5 m2. Over the two days 2 people were killed, 5 people were injured, and 4 homes were swept away or partially destroyed.</td>
</tr>
<tr>
<td>1987 (Showa 62)</td>
<td>Earthquake</td>
<td>July 1 to 5.</td>
</tr>
<tr>
<td>1988 (Showa 63)</td>
<td>Earthquake</td>
<td>June. Maximum magnitude of M4.5. An earthquake swarm occurred, with its hypocenter near the western coast of Lake Inawashiro. 14 earthquakes felt at Wakamatsu City occurred between June 16 and the end of June. On November 8 there was an earthquake swarm in a nearby location, with a maximum magnitude of M4.3 and JMA scale seismic intensity of 4 at Wakamatsu.</td>
</tr>
<tr>
<td>2000 (Heisei 12)</td>
<td>Earthquake</td>
<td>From late April seismic activity increased in the summit area. On May 10 the first volcanic tremor since the observation began in 1965 was detected. On May 21 a M1.9 earthquake occurred. In August the number of earthquakes increased dramatically. On August 15 M2.1 and M2.4 earthquakes occurred, both registering a JMA scale seismic intensity of 1 in Jonan, Inawashiro Town. These were followed by frequent low-frequency and very-long-period earthquakes, and volcanic tremor with their hypocenters in shallow areas beneath the summit. No significant ground deformation corresponding to this seismic activity was observed, nor were changes in surface phenomenon observed.</td>
</tr>
<tr>
<td>2001 (Heisei 13)</td>
<td>Earthquake</td>
<td>Slightly high level of seismic activity. There continued to be low-frequency, very-long-period, and deep low-frequency earthquakes, as well as volcanic tremor with their hypocenters in shallow areas beneath the summit. The seismic activity dropped after May.</td>
</tr>
</tbody>
</table>

* Reference documents have been appended with reference to the catalog of eruptive events during the last 10,000 years in Japan, database of Japanese active volcanoes, and AIST (Kudo and Hoshizumi, 2006) for eruptive period, area of activity and eruption type.
Major Volcanic Activity
- July 15, 1888, Eruption

On July 15, 1888, a phreatic eruption caused a collapse of the north side of the volcano, including the summit of Kobandaisan. The debris avalanche created by this collapse caused severe damage. The explosion sound could be heard 50 to 100 km away, and ash fall reached as far as the coast of the Pacific Ocean. At the same time, there was a blast (pyroclastic surge) and debris flow along Biwazawa, destroying the village of Shibutani at the southeast foot of the volcano (Sekiya and Kikuchi, 1890; Yamamoto et al., 2000). Notable landforms created by this collapse and debris avalanche include the horseshoe-shaped caldera wall on the northern side of the summit (measuring approximately 2.2 km east-west and approximately 2 km north-south), as well as large and small lakes and marshes, and the hummocky topography of the Ura-Bandai Plateau, at the northern foot of the volcano, Hibara Lake, Lake Onogawa, and Lake Akimoto. There were many subsequent lahars (volcanic lahars) inside the explosion crater.

Figure 36-4 Topography of the crater area after the 1888 eruption (Sekiya and Kikuchi, 1890).
Figure 36-5 Shibutani village (located at the southeastern foot of the volcano), in which houses were destroyed and trees were knocked over by the blast (pyroclastic surge) which came down Biwazawa (Courtesy of the Archives and Mausolea Department, the Imperial Household Agency).

Figure 36-6 Distribution of hummocks caused by the 1888 collapse (Hoshino et al., 1995).
Recent Volcanic Activity

Figure 36-8 Temporal change in maximum fume height per month (April, 1996, to June, 2012).

Figure 36-9 Seismic activity (July, 1965, to June, 2012). Monthly number of earthquakes (top) and tremor events (bottom).

① Number of earthquakes per day (January, 2000, to June, 2012)

② Number of tremor events per day (January, 2000, to June, 2012)

③ Tremor duration (vertical axis) and maximum amplitude (circle radius) (January, 2000, to June, 2012).

Figure 36-10 Recent seismic activity (January, 2000, to June, 2012).
Figure 36-11 Distribution of volcanic earthquakes in and around the summit area (June 1, 2000, to June 30, 2012).

Epicenter distribution (upper left), space-time plot in a N-S cross-section (upper right), hypocenter distribution in a E-W cross-section (lower left) and depth-time plot (lower right).
Figure 36-12 Activity of shallow VT earthquakes (blue circles) and deep low-frequency earthquakes (red circles) observed by a regional seismometer network (October 1, 1997, to June 30, 2012). Epicenter distribution (upper left), space-time plot (N-S cross-section) (upper right), E-W cross-section (lower left) and magnitude-time diagram (lower right).
Figure 36-13 Hypocenter distribution observed during the unrest of 2000-2001 (Nishimura et al., 2002). (a) Very-long-period particle motions at 5 observation points, and (b) the epicenter of the very-long-period earthquake located from that particle motions (large star). The small stars indicate the epicenters of short-period earthquakes included within the very-long-period earthquake. The white circles indicate the epicenters of volcano-tectonic earthquakes occurring between January, 2000, and May, 2001. The epicenters of the short-period earthquake included within the very-long-period earthquake are located in the areas near the summit of Bandaisan where there are no volcano-tectonic earthquakes, and the epicenter of the very-long-period earthquake is estimated to be 1km north of that area, below the horseshoe-shaped crater.
Information on Disaster Prevention

① Hazard Map

Bandaisan Volcano Disaster Prevention Map (Wide Area Version) May, 2001 (Revised January, 2012)

Published by Koriyama City, Aizuwakamatsu City, Kitakata City, Bandai Town, Kitashiobara Village, and Inawashiro Town.

Editorial supervision by the Bandaisan Volcano Disaster Prevention Coordinating Committee

Source: Bandaisan Volcano Disaster Prevention Map

Published: May, 2001 (revised January, 2012)

Created by: Koriyama City, Aizuwakamatsu City, Kitakata City, Bandai Town, Kitashiobara Village, and Inawashiro Town

Editorial supervision: Bandaisan Volcano Disaster Prevention Coordinating Committee

Volcanic Alert Levels (Used since March 31, 2009)

■磐梯山の噴火警戒レベルと規制範囲

レベル1（平常）：状況に応じて火口内等への立入規制
レベル2（火口周辺規制）：火口から概ね1km以内の立入規制
レベル3（入山規制）：火口から概ね3km以内の立入規制
レベル4（避難準備）：地域が必要な居住地域での避難準備
レベル5（避難）：避難な居住地域からの避難等

■磐梯山の火山活動
1888年に発生した水蒸気爆発により山体の北側が崩壊し、発生した岩塊が多気で山麓の村落が被災し大量被害を生じました。この噴火で4600名が犠牲になりました。

レベル1の規制範囲
火口内等状況に応じて立入規制

レベル2で通行規制

レベル3で通行規制

■火山活動

レベル4で通行規制

■居住地域範囲

■スキー場

この図は、国土交通省「災害地図50000（地図編）」使用して作成しています。
Volcanic Alert Levels for the Bandaishan Volcano (Valid as of March, 2009)

<table>
<thead>
<tr>
<th>Warning and Forecast</th>
<th>Target Area</th>
<th>Levels & Keywords</th>
<th>Expected Volcanic Activity</th>
<th>Actions to be Taken by Residents and Climbers</th>
<th>Expected Phenomena and Previous Cases</th>
</tr>
</thead>
</table>
| **Eruption Warning** | Residential areas and areas closer to the crater | 5 Evacuate | Eruption or imminent eruption causing significant damage to residential areas | Evacuate from the danger zone | ● Large eruption.
● Eruption or imminent eruption, with lahAR by melted snow flow reaching residential areas.
Past Examples: None
Expected Situations: Moderate eruption like the 1888 phreatic explosion during winter when snow has accumulated |
| | | 4 Prepare to evacuate | Possibility of eruption causing significant damage to residential areas (increased probability) | Those within the alert area should prepare for evacuation. Those requiring protection in the event of an disaster must be evacuated. | ● Possibility of a large eruption.
● Possibility of melted snow volcanic lahAR caused by eruption, extending to residential areas in the event of continuation of eruption.
Past Examples: None
Expected Situations: Moderate eruption like the 1888 phreatic explosion during winter when snow has accumulated |
| **Crater Area Warning** | Non-residential areas near the volcano | 3 Do not approach the volcano | Eruption or prediction of eruption causing significant damage to areas near residential areas (entering area is life threatening). | Residents can go about daily activities as normal. When necessary, evacuation preparations should be performed for those requiring protection in the event of a disaster. Access restrictions for dangerous areas, including mountain climbing and mountain access prohibitions, etc. | ● Moderate eruption, with scattering of volcanic blocks within a distance of approximately 3 km from the crater.
Past Examples: None
● Possibility of moderate eruption.
Past Examples: August 15, 2000: 403 earthquakes per day, felt-earthquakes, slight changes in GPS baselines, mountain access restrictions, Bandaishan Gold Line usage restrictions |
| | Crater area | 2 Do not approach the crater | Eruption or prediction of eruption affecting area around crater (entering area is life threatening). | Residents can go about daily activities as normal. Access to crater area restricted, etc. | ● Small eruption, with scattering of volcanic blocks within a distance of approximately 1 km from the crater.
Past Examples: None
● Possibility of small eruption.
Past Examples: None |
| **Eruption Forecast** | Inside the crater | 1 Normal | Little or no volcanic activity. Volcanic ash may be emitted within the crater as a result of volcanic activity (entering area is life threatening). | Access to interior of and area around crater restricted as necessary, etc. | Situation at present. |

Note 1: The volcanic blocks mentioned in this table refer mainly to blocks large enough that their trajectories are not affected by wind.

Note 2: Level 3 restrictions include access restrictions on some roads.

Note 3: Craters refer to both the Numanotaira and the Akanuma area old craters.
Social Circumstances

1. Populations
 - Inawashiro Town: 16,075 (as of October 31, 2011)
 - Bandai Town: 3,863 (as of November 1, 2011)
 - Kitashiobara Village: 3,250 (as of November 1, 2011)

2. National Parks, Quasi-National Parks, Number of Climbers
 - Bandai-Asahi National Park - Bandaisan
 Number of sightseers per year: 5,483,878 (according to Fukushima Prefecture sightseeing figures (2010) for Bandai and Inawashiro)
 Number of mountain-climbers per year: 85,373
 (according to Fukushima Prefecture sightseeing figures (2010) for Bandaisan from Inawashiro, Kitashiobara, and Bandai)
 - Bandaisan area registered as "Japanese Geopark" in September, 2011.

3. Facilities
 - Kitashiobara
 Mt. Bandai Eruption Museum
 Urabandai Visitor Center
Monitoring Network
Wide Area * See Azumayama
In and Around the Summit

* Monitoring sites with multiple observation instruments are indicated by small black dots, and other symbols indicate types of monitoring.

1:50,000 scale topographic maps (Kitakata, Atsushio, Bandaisan and Azumayama) published by the Geospatial Information Authority of Japan

Figure 36-14 Local monitoring network.
Bibliography

(Kawanabe, Y., and Ueki, S.)