### (2) 地震活動

### ア.地震の発生場所の詳細及び地震の発生状況

2019年6月18日22時22分に山形県沖の深さ14kmでM6.7の地震(最大震度6強)が発生した。 この地震発生以降、北東-南西方向に長さ約20kmの領域で、地震活動が本震-余震型で推移している。 最大規模の余震は、6月19日00時57分に発生したM4.2の地震(最大震度4)で、この地震を含めて6月 30日までにM4.0以上の余震が4回発生している。



(2019年6月18日~2019年6月30日、深さO~30km、M≧1.5)



## イ.発震機構

1997年10月から2019年6月までに発生したM3.5以上の地震の発震機構を図2-5に示す。周辺で発生 する地震は、発震機構が北西-南東方向あるいは西北西-東南東方向に圧力軸を持つ逆断層型の地震が 多い。今回の地震活動によるM3.5以上の地震の発震機構は、西北西-東南東方向あるいは北西-南東方 向に圧力軸を持つ逆断層型であり、これまでの活動と調和的であった。



## ウ. 震源過程解析

### 近地強震波形による震源過程解析

2019 年 6 月 18 日 22 時 22 分に山形県沖で発生した地震(M6.7) について、国立研究開発法人防災科学 技術研究所の強震観測網(K-NET、KiK-net)及び気象庁震度計の近地強震波形を用いた震源過程解析を行った。

破壊開始点は、気象庁による震源の位置(38°36.5′N、139°28.8′E、深さ14km)とした。断層面は 気象庁 CMT 解の2枚の節面のうち、東南東傾斜の面(走向26°、傾斜27°)を仮定して解析した。最大 破壊伝播速度は3.0km/sとした。理論波形の計算には、Koketsu et al. (2012)の結果から設定した地下 構造モデルを用いた。主な結果は以下のとおり。

- ・主なすべり域の大きさは走向方向に約10km、傾斜方向に約10kmであった。
- ・主なすべりは破壊開始点から北西に広がり、最大すべり量は 1.5m であった(周辺の構造から剛性率を 30GPa として計算)。
- ・主な破壊継続時間は約10秒であった。
- ・モーメントマグニチュードは6.4であった。

結果の見方は、https://www.data.jma.go.jp/svd/eqev/data/sourceprocess/about\_srcproc.html を参照。



今回の解析の結果は暫定であり、今後更新することがある。



謝辞 国立研究開発法人防災科学技術研究所の強震観測網(K-NET、KiK-net)を使用しました。 参考文献

Koketsu, K., H. Miyake and H. Suzuki, Japan Integrated Velocity Structure Model Version 1, paper no. 1773. Paper Presented at the 15<sup>th</sup> World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Lisbon, 24-28 Sept. 2012.

#### 遠地実体波による震源過程解析

2019年6月18日22時22分に山形県沖で発生した地震について、米国大学間地震学研究連合(IRIS) のデータ管理センター(DMC)より広帯域地震波形記録を取得し、遠地実体波を用いた震源過程解析 (注1)を行った。

破壊開始点は、気象庁による震源の位置(38°36.4′S、139°28.7′E、深さ14km)とした。断層 面は、気象庁 CMT 解の2枚の節面のうち、東南東傾斜の節面(走向26°、傾斜27°、すべり角86°) を仮定して解析した。最大破壊伝播速度は3.0km/sとした。理論波形の計算には CRUST2.0 (Bassin et al., 2000)および IASP91 (Kennett and Engdahl, 1991)の地下構造モデルを用いた。

主な結果は以下のとおり。

- ・主な破壊領域は走向方向に約10km、傾斜方向に約10kmであった。
- ・主なすべりは破壊開始点から西方向に広がり、最大すべり量は 1.9m であった(周辺の構造から 剛性率を 30GPa として計算)。
- ・主な破壊継続時間は約8秒であった。
- ・モーメントマグニチュード (Mw) は 6.5 であった。

結果の見方は、https://www.data.jma.go.jp/svd/eqev/data/world/about\_srcproc.html を参照。



<sup>(</sup>注1)解析に使用したプログラム

M. Kikuchi and H. Kanamori, Note on Teleseismic Body-Wave Inversion Program, http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/

今回の解析の結果は暫定であり、今後更新することがある。



図2-19 観測波形(上:0.01Hz-0.5Hz)と理論波形(下)の比較



※2: IRIS-DMC より取得した広帯域地震波形記録を使用。

図 2 - 20 観測点分布

#### 参考文献

- Bassin, C., Laske, G. and Masters, G., 2000, The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897.
- Kennett, B. L. N. and E. R. Engdahl, 1991, Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429-465.

### エ. 過去の地震活動

1885年以降の活動をみると、今回の地震の震央周辺では、M7.0以上の地震が時々発生している。この うち1964年6月16日に発生した「新潟地震」(M7.5、最大震度5)では、死者26人、負傷者447人、住家 全壊1,960棟、半壊6,640棟、一部破損67,825棟の被害が生じた。また、この地震により津波が発生し、 新潟県の直江津で280cm(最大全振幅)などを観測した(気象庁(1965)による)。この他にも、1833年12 月7日に庄内沖で津波を伴う地震(M7<sup>1</sup>/<sub>2</sub>)が発生し、死者約150人などの被害が生じた。(被害は「日 本被害地震総覧」による。)



(1885年1月1日~2019年6月30日、深さ0~60km、M≧6.0) 震央分布中の茶色の細線は、地震調査研究推進本部による主要活断層帯を示す。 震源要素は、1833年の庄内沖の地震は国立天文台編(2018)、1885年~1921年は 茅野・宇津(2001)、宇津(1982、1985)による。



出典

- 宇津徳治(1982):日本付近のM6.0以上の地 震及び被害地震の表:1885年~1980年, 震研彙報,56,401-463.
  - 宇津徳治(1985):日本付近のM6.0以上の地 震及び被害地震の表:1885年~1980年 (訂正と追加),震研彙報,60,639-642.
  - 茅野一郎・宇津徳治(2001):日本の主な地 震の表,「地震の事典」第2版,朝倉書 店,657pp.
  - 気象庁(1965):昭和39年6月16日新潟地震 調査報告,気象庁技術報告,第43号, 28-36.
  - 国立天文台編(2018):理科年表2019, 丸善 出版.



図2-23 内陸及び沿岸で発生した主な地震の回数比較(M≧3.5、2019年6月30日現在) マグニチュードは最大のものを示す。 資料は速報値を含むため、後日の調査で変更される場合がある。