資料4-3

気象庁発表ポスター

気象庁

919 The Japanese Enhanced Fujita Scale:

Its Development and Implementation

*1: Japan Meteorological Agency (JMA)

*Chair **Vice-Chair

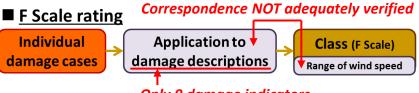
1. Introduction

1-1. Tornadoes in Japan

Annual frequency of confirmed tornadoes in Japan: 25

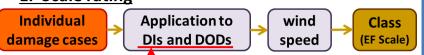
(2007-2015 average)

↑ Tornado in Nobeoka [F2] (17 SEP, 2006) 3 fatalities, 143 injuries, 427 houses destroyed or severely damaged

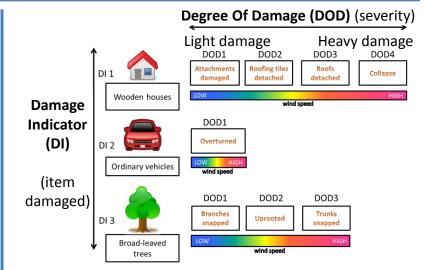

← Tornado in Saroma [F3] (7 NOV, 2006) 9 fatalities, 33 injuries

After these hazardous tornadoes, enhanced damage investigation started in 2007.

- 1-2. Necessity of a new set of guidelines for tornado rating in Japan
 - F Scale / EF Scale → based on damage to buildings and trees in the United States and Canada
 - → It was recommended that Japan Meteorological Agency (JMA) formulate a new set of guidelines to be applied to buildings and structures in Japan.
 - In formulating a new set of guidelines:
 - Organization of an advisory committee
 - Consideration of expertise in wind engineering
 - Ensurance of statistical continuity with F Scale


2. Development of the Japanese Enhanced Fujita (JEF) Scale

2-1. Issues for F Scale and EF Scale



Only 9 damage indicators

■ EF Scale rating

defined for buildings and structures in the US and Canada

2-2. Formulation of the Japanese Enhanced Fujita (JEF) Scale

- Members of the Advisory Committee of Tornado Intensity Rating -ITO, Masaru Nihon Sekkei, Inc. [architecture] KIKITSU, Hitomitsu Building Research Institute [wind engineering] MAEDA, Junji Kyushu University [wind engineering] NIINO, Hiroshi** The University of Tokyo [meteorology] OKUDA, Yasuo National Institute for Land and Infrastructure Management [wind engineering] SAKATA, Hiroyasu Tokyo Institute of Technology [architecture] SHOJI, Yoshinori Meteorological Research Institute [JMA/meteorology] SUZUKI, Satoru Forestry and Forest Products Research Institute [dendrology] TAMURA, Yukio* Tokyo Polytechnic University [wind engineering]

Note: Members listed above and other 16 researchers cooperated to establish DIs/DODs and corresponding wind speeds.

3. Details of the JEF Scale

- 3-1. Characteristics of the JEF Scale
 - DIs/DODs
 - → buildings and structures commonly found in Japan
- Tornado intensity is estimated by wind speed rounded to multiples of 5m/s (3-sec. average) from engineering expertise.

▼List of DIs

	7 2134 31 213						
	1	Wooden houses or stores	16	Railway vehicles			
	2	Industrialized steel-framed	17	RC utility poles			
		houses (prefabricated)					
	3	RC apartment buildings	18	Ground-based billboards			
	4	Temporary buildings	19	Traffic signs			
	5	Large eaves	20	Carports			
	6	Steel-framed warehouses	21	Hollow concrete block (HCB) walls			
	7	Small non-residential	22	Wooden, plastic, aluminum or mesh			
J		wooden buildings		fences			
	8	Greenhouses, gardening	23	Windbreak or snowbreak fences for			
		facilities		roads			
	9	Wooden livestock sheds	24	Net fences			
١	10	Small sheds	25	Broad-leaved trees			
Ш	11	Shipping containers	26	Coniferous trees			
	12	Vending machines		Gravestones			
	13	Light vehicles	28	Road surfaces			
	14	Ordinary vehicles		Temporary scaffolding (with wall ties)			
2	15	Large vehicles	30	Gantry cranes			

3-2. DOD example

	DI-1. Wooden nodses of stores					
505	OD Damage		Wind speed (m/s)			
DOD			Rep.	LB	UB	
1	Visible minor damag	ge (breakage of glass)	30	25	35	
	Minor loss	Clay tile roofing	35	25	50	
2	(detachment)/ displacement of roofing materials	Metal sheet roofing	40	30	55	
	Major loss	Clay tile roofing	45	30	60	
3	(detachment) of roofing materials	Metal sheet roofing	50	40	65	
4	Destruction/detachersheathing roof boar	50	40	65		
5	Damage (deformation, cracking, etc.) to walls from deformation of main frames			40	65	
6	Loss of metal wall cladding		60	45	70	
7	Destruction/detachment of roof			50	75	
8	Major destruction/collapse of main structures and frames 75 55		55	85		

3-3. Wind speed estimation example

DI=1: "Wooden houses and stores"

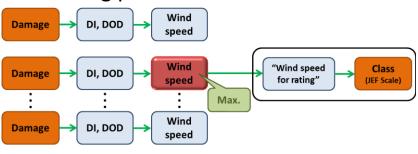
DOD=8: "Major destruction/collapse of main structures and frames"

Wind load	against	buildings	w	(N/m²)

		1	C
W	=	$\frac{1}{2}\rho V^2$	\mathcal{L}_f
		_	-

Horizontal resistant strength R (N/m²)

$$R = C_0 \frac{W}{A_w}$$


Wind speed for DOD is the minimum instantaneous wind speed *V* that satisfies:

 $R \leq w$

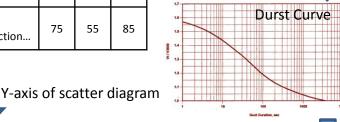
	ρ	air density (1.2 kg/m³)
	V	instantaneous wind speed (m/s)
	C_f	wind force coefficient (1.2) *from engineering estimation
	W	building weight (N)
	A_w	wind receiving area (m²)
	C_0	story shear coefficient *depends on construction period
	C_0	•

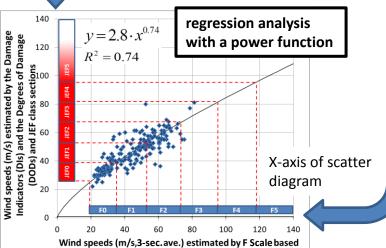
Construction period	Before 1981 ↓	1981-2000 ↓	After 2000 ↓
Wind speeds (m/s)	LB (Lower Bound wind speed)	Rep. (Representative wind speed)	UB (Upper Bound wind speed)
	55	75	85

3-4. Rating procedure for the JEF Scale

4. Determination of correspondence between JEF Scale classes and wind speeds

rating using
F Scale


Wind speed range


•				
OD	Damaga	Wind speed (m/s)		
טט	Damage	Rep.	LB	UB
1	Visible minor damage	30	25	35
				
7	Destruction of roof frames	65	50	75
8	Major destruction	75	55	85

on the expressions of damage

F0	17-32 (15-sec. ave.)
F1	33-49 (10-sec. ave.)
F2	50-69 (7-sec. ave.)
F3	70-92 (5-sec. ave.)
F4	93-116 (4-sec. ave.)
F5	117-141(3-sec. ave.)

converting wind speed ranges into 3-sec. averaged wind speeds using Durst Curve

Class	Wind speed range (m/s) (3-sec. ave.)	Primary damage (instances of damage cases for reference)
JEF0	25 to 38	
JEF1	39 to 52	
JEF2	53 to 66	
JEF3	67 to 80	
JEF4	81 to 94	Roofing materials of large eaves of factories or warehouses overturned or blown away over relatively large areas
JEF5	Over 95	Main frames of steel-framed prefabricated houses or warehouses severely deformed or destroyed Banisters on balconies of reinforced-concrete apartment buildings severely deformed or

5. Operational use of the JEF Scale rating in 2016

JEF Scale rating was started by JMA in 1 April, 2016.

destroyed

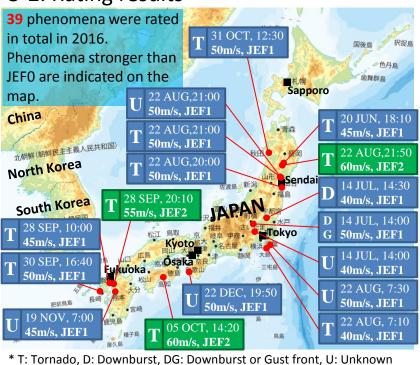
5-1. Primary rating cases

DI=6: →
"Steel-framed warehouses"

DOD=3: "Loss (removal, detachment)/ distortion of roofing materials"
[With openings at windward

wall] (UB, 60m/s)

(Kochi City, 5 OCT, 2016)



DI=13: "Light vehicles"
[Vans, lightweight trucks with hoods]

DOD=1: "Overturning" (Rep., 40m/s)

(Akita City, 31 OCT, 2016)

5-2. Rating results

6. English version of the guidelines for the JEF Scale

English version is under preparation and will be uploaded on JMA web site (http://www.jma.go.jp/jma/en/Publications/ publications.html) in due course.

Contents of "Guidelines for the Japanese Enhanced Fujita Scale"

Chapter 1 The History of the Japanese Enhanced Fujita Scale's Formulation

1.1. Rating of tornadoes using the Fujita Scale

JEF1:

- 1.2. Issues of the Fujita Scale and the Enhanced Fujita Scale
- 1.3. Efforts to develop the Japanese Enhanced Fujita Scale

Chapter 2 The Japanese Enhanced Fujita Scale and its Characteristics

- 2.1. Introduction of damage indicators and degrees of damage corresponding to buildings and structures in Japan
- 2.2. Wind speeds corresponding to damage indicators and degrees of damage
- Correspondence of wind speed ranges to classes in consideration of statistical continuity

Chapter 3 Rating Procedure for the Japanese Enhanced Fujita Scale References

Appendix A: Members of the Advisory Committee for Tornado Intensity Rating

- Appendix B: Relationships between Damage Indicators (DIs)/Degrees of Damage (DODs) and Wind Speeds
- Appendix C: Determination of Correspondence between Japanese Enhanced Fujita Scale Classes and Wind Speeds

7. Conclusions

- Japanese Enhanced Fujita (JEF) Scale, which can rate the intensity of tornadoes in Japan more accurately than the conventional F Scale, was developed.
- JEF Scale includes **DIs and DODs corresponding to buildings and structures commonly found in Japan**. Wind speeds corresponding to DODs were determined by **expertise in wind engineering**.
- The Advisory Committee plans to revise JEF Scale continuously, by adding new DIs and/or re-evaluating wind speeds corresponding to DODs as wind resistance of buildings improves in the future.
- Unmanned Aerial Vehicles (UAVs) are being considered as a useful tool for a more detailed investigation of buildings from various angles in determining DI and DOD.