VISSR キャリプレーションデータ累積・編集
プログラムの開発について

Development of Computer Programs for VISSR
Calibration Data Archiving and Editing

徳野正己*・由田建勝**
Masami Tokuno* and Tatekatu Yoshida**

Abstract

Since the characteristics of visible and infrared brightness levels of VISSR are affected by the temperature in the bus of VISSR, debasement of the sensor and electronics circuits and so on, it is necessary to carry out the calibration processing repeatedly for normalizing and correcting to maintain the constant quality of VISSR image data. This calibration processing is carried out once a day in MSC Computer System.

In order to evaluate and analysis the calibration data, it is useful to produce the accumulated calibration data set on magnetic tape for long period. The computer programs to produce this data set were developed.

The computer programs have the following functions;
(1) accumulating the calibration data arranged by time-sequence on MT.
(2) extraction and edition of arbitrary calibration data from the accumulated data set and print out the results on line printer.

As this data sets are produced routinely on the computer compatible tape in MSC, it would be able to use for data archiving of calibration data.

1. はじめに

VISSR 内部の温度変化や可視・赤外センサー, 電子回路の劣化などにより, VISSR 画像データの輝度特性は変化するので, VISSR 画像データの品質を保つために地上でキャリプレーション処理を行なう必要がある。

従来, 気象衛星センターでは, オンライン系計算機システムで, 1日1回「VISSR キャリプレーション」処理を行なない, その結果を日単位でオンライン系のラインプリンターへ出力していた。キャリプレーションデータの整理やデータの経年変化を調査する場合, 日単位のリストから必要項目を読むのでは不便である。そこで下

* 気象衛星センターデータ処理課, Meteorological Satellite Center
** 気象衛星センター管制課, Meteorological Satellite Center
2. VISSR キャリプレーションデータ累積の方法

気象衛星センターのオンライン系計算機システムで行われる処理結果の多くは、システム出力ファイル（磁気テープ）を含む SYSOUT MT（以下 SYSOUT MT とする）へ累積され保存されている。この SYSOUT MT には各種業務处理のリストデータが混在しており、「VISSR キャリプレーション処理のリストデータ」処理のリストデータもこの SYSOUT MT に出力されているので、この MT から「VISSR キャリプレーション処理」の結果のみを抽出し、別の磁気テープへ累積することにした。

SYSOUT MT から VISSR キャリプレーションデータを抽出する際には、抽出されたデータをそのままの形式で累積 MT に累積するのではなく、後の抽出・編集処理が容易にできるように以下の変換を行い、累積 MT にキャリプレーション情報を累積することとした。

1. 出力データに日付情報をつける。
2. 出力データをレコード長 144 バイト、22レコードで１ブロックとして固定長で累積する。
3. 出力データの制御文字を識別し、22レコードで満たない時、空白のレコードを増えてブロック化をする。
4. 改頁文字のレコードから次の改頁文字の直前のレコードまでを同一タイトル領域と判断し、各ブロック識別コードを新たにつける。

以上の、VISSR キャリプレーションデータ累積処理のフローを Fig. 1 に示す。

3. キャリプレーションデータの時系列的編集・出力処理

気象衛星センターでは、VISSR キャリプレーションデータの整理、解析を行っているが、これまで、毎日出力されるキャリプレーション処理のラインプリンタリストの中から必要な項目を読みとり、手作業でデータを作成していた。第2節で述べたキャリプレーションデータの累積 MT を用いて、計算機により必要なデータ項目を時系列的に編集することが可能となるため、キャリプレーションデータの整理、解析を自動的に行なうことが出来るようになる。

この時系列的編集・出力処理の処理フローを Fig. 2 に示す。

Fig. 2 の処理で編集、出力されるデータは、通常のキャリプレーション業務で必要とされるものである。その項目を以下に示す。

Fig. 3 に赤外キャリプレーション関係のデータ項目の出力例を示す。

赤外キャリプレーション関係の出力項目は以下のものである。

① ステアケース関係式の係数（β_0, β_1）
② 宇宙空間輝度データの輝度レベル C_s（Space Brightness）
③ 黒体シャッター輝度データの輝度レベル C_{sh}（Shutter Brightness）

Fig. 1 Flow of VISSR calibration data accumulation procedure.

Fig. 2 Flow of VISSR calibration data edition procedure.
Fig. 3 Infrared calibration data table.

<table>
<thead>
<tr>
<th>119821</th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>0.2</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>0.3</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Fig. 4 Visible calibration data table.

<table>
<thead>
<tr>
<th>119821</th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>0.2</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>0.3</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
</tr>
</tbody>
</table>

⑥ 映体放射エネルギーと VISSR 電圧値の比 (G)
⑦ 宇宙空間の VISSR 電圧値 (Vs)
⑧ 有効映体サッター温度 (Tc)
⑨ 映体サッター温度 (T1, T2, T3)
⑩ VISSR サッター温度 (T1, T2, T3)
⑪ 赤外キャリブレーション変換テーブルを更新する
時のテーブル番号 (Table ID)

Fig. 4 に可視キャリブレーション関係のデータ表の出力形式を示す。
Fig. 5 Infrared calibration conversion table.

Fig. 6 Visible calibration conversion table.
したがって時系列的にラインプリンターに出される。
一方、特別な場合のキャリプレーション状況の調査のために、通常業務で処理している以外のキャリプレーショング項目についても検討し、出力する必要性が生じることも考えられる。

このため、最大37項目の特定データを時系列的に抽出し出力する処理プログラムを別に作成した。
入力データは、通常業務の場合と同じに VISSR キャリプレーション累積 MT である。出力データは、ラインプリンター上に、Fig. 8 に示されるように特定要案別に時系列に出される。抽出指定は、通常業務で抽出されるデータの他に、可視、赤外キャリプレーション関係で調査される行便性のあるデータを全部網羅している。
処理フローを Fig. 7 に示す。
入力指定カードにしたがって、指定項目が時系列に出力される。
また、プロックリスト（キャリプレーションリストの特定要件に対応）については、全部出力することが可能である。
調査用プログラムは、カード入力からの時間情報と、累積 MT の日付ブロックの時間情報に読みとり、この両者を比較して処理すべきデータ範囲を判定している。

4. まとめ

VISSR キャリプレーションデータ累積プログラムを現業業務で使用することにより、磁気テーブにコンパクトに、長期保存することが可能となり、また、時系列的検査・出力処理によりキャリプレーションデータの整理・解析の効率化、省力化が図られると期待される。
なお、今後、X-Y プロットにキャリプレーションデータを時系列に作画することを考えており、これができるとさらに利用し易いものになると考えている。
最後に、プログラムの開発にあたり、いろいろ御教示をいただいた松橋史郎データ処理課長、山本孝二管制課長、及び、北谷茂調査官に深く感謝いたします。

Fig. 7 Flow of the procedure to pick up the data pointed.

Fig. 8 Item calibration data picked up in time series.
References

田中公男：1979年 GMS 簿

富士通株式会社：FACOM 230 M-VI/VII システム マクロ文法書 II