

Presented to the Sixth Asia/Oceania Meteorological Satellite Users' Conference

0

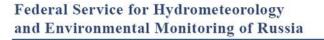
Federal Service for Hydrometeorology and Environmental Monitoring of Russia

Roshydromet Space Observation System Objectives

HYDROMETEOROLOGY AND GEOPHYSICAL MONITORING:

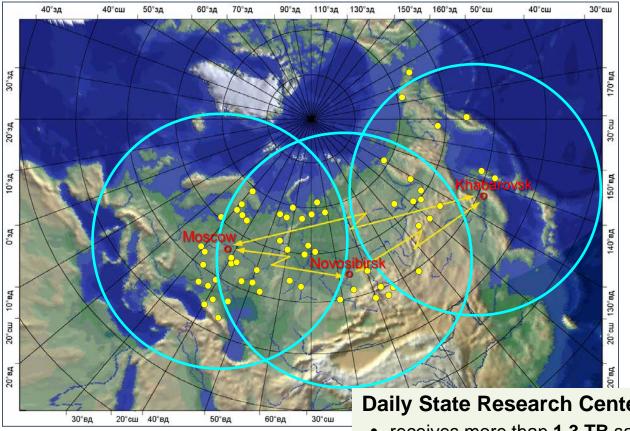
- atmosphere and ocean monitoring and forecasting;
- ice monitoring for navigation in Arctic and Antarctic regions;
- heliogeophysical information service;
- ground-based observation data collection and retransmission via satellite.

DISASTER MONITORING:


- disaster features detection;
- disaster impact /damage assessment;
- risk areas examination, including an assessment of probability and scale of disaster.

PLANET MONITORING AND GLOBAL CLIMATE CHANGES:

- climate, ocean and landscape change studies based on radiation balance, cloud cover, ozone layer, cryosphere, sea surface temperature and ocean color, vegetation cover data etc.;
- climate and climate affecting processes studies.


ENVIRONMENTAL POLLUTION MONITORING:

- environmental pollution mapping for atmosphere, land surface and ocean;
- assessment of risk zones for spreading contamination, including radioactive contamination.

Ground Segment of Earth Observation Satellite System

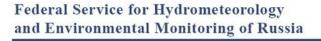
Regional Centers:

European

(SRC Planeta, Moscow -Obninsk - Dolgoprudny)

Siberian

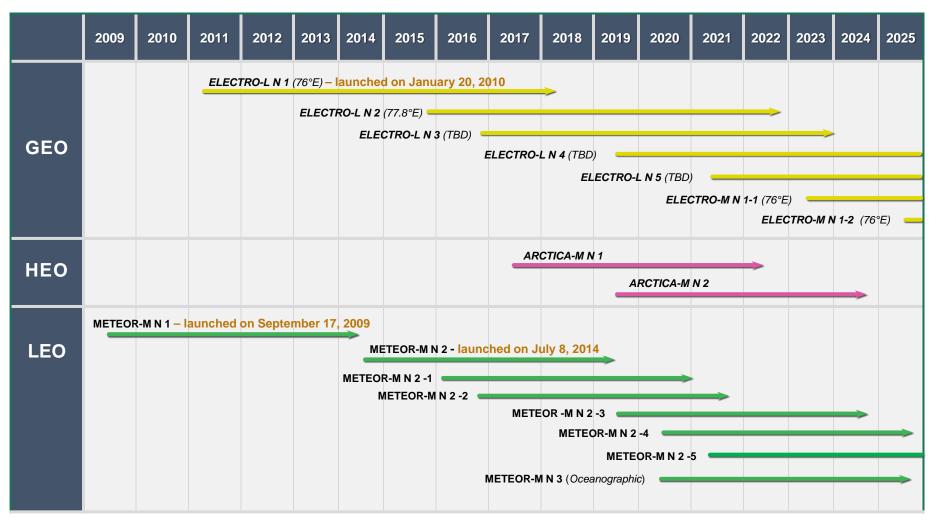
(SRC Planeta, Novosibirsk)


Far-Eastern

(SRC Planeta, Khabarovsk)

• - more than **70** local centers

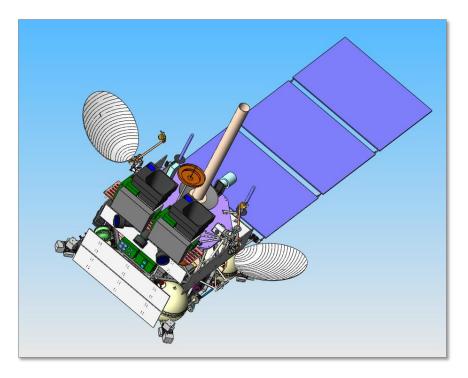
Daily State Research Center "Planeta":


- receives more than **1.3 TB** satellite data;
- produces more than **430 types** of satellite-based products;
- provides data for more than 540 federal and regional users.

Russian Meteorological Satellite Systems

(Russian Federal Space Program for 2006-2015 and the forecast for 2016-2030)

Federal Service for Hydrometeorology and Environmental Monitoring of Russia



Status of Current GEO Satellite Systems

Federal Service for Hydrometeorology and Environmental Monitoring of Russia

ELECTRO-L General Design

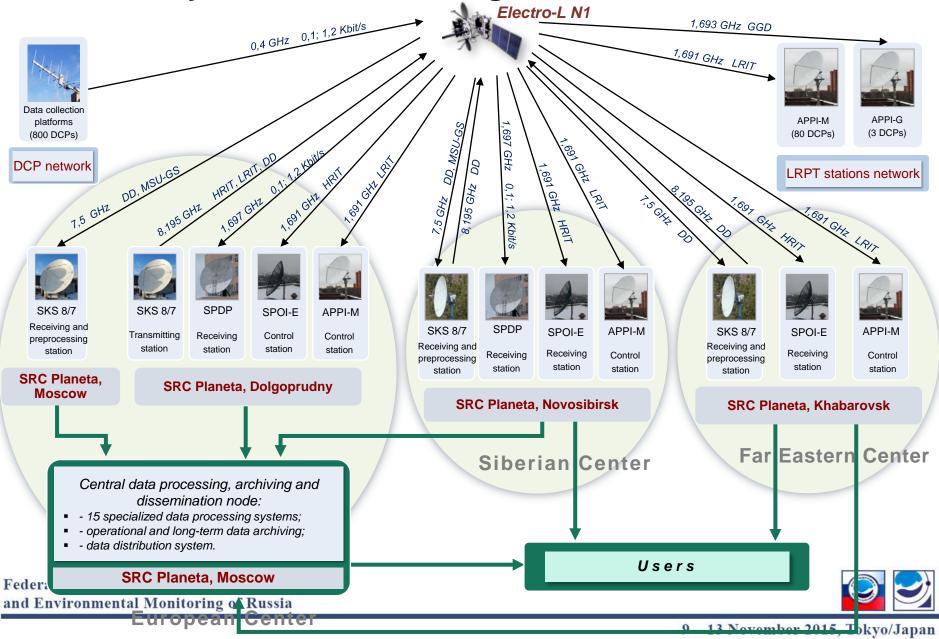
Russian geostationary satellite ELECTRO-L N1 was launched on **January 20, 2011** Three-axis high-precision stabilization In-orbit mass - 1500 kg Payload mass - 370 kg Lifetime - 10 years Longitude – 76°E Data dissemination format - HRIT/LRIT Image repeat cycle – 30/15 min

Mission objectives

- Operational observation of the atmosphere and the Earth surface
- Heliogeophysical measurements
- Maintaining Data Collection System and COSPAS/SARSAT Service

MSU-GS Basic Characteristics

Parameter	Value
Number of channels VIS IR	10 3 7
Spectral channels (µm)	0.5-0.65; 0.65-0.80; 0.8-0.9; 3.5-4.0; 5.7-7.0; 7.5-8.5; 8.2-9.2; 9.2-10.2; 10.2-11.2; 11.2-12.5
Image frame (deg x deg)	$20 \pm 0.5 \ x \ 20 \pm 0.5$
HRIT spatial resolution at sub-satellite point (km)	1.0 (VIS); 4.0 (IR)
S/N ratio for VIS channels	≥ 200
NEΔT at 300K (K) • in the band 3.5-4.0 μm • in the band 5.7-7.0 μm • in the band 7.5-12.5 μm	0.8 0.4 0.1-0.2
Power (W)	≤ 15 0
Mass (kg)	≤ 88
Lifetime of basic and reserve units (years)	10
Service for Hydrometeorology	


Status of Electro-L N1 Spacecraft

- MSU-GS instrument operates in the degraded mode due to technical issues onboard the spacecraft;
- DCS is fully functional (300 national channels and 33 international channels);
- COSPAS-SARSAT system is functional;
- GGAK instrument operates with significant limitations;
- > HRIT/LRIT channels are functional, but currently not in use;
- When available, the data in HRIT format is distributed via SRC Planeta FTP server.

Coordination Group for Meteorological Satellites - CGMS

Roshydromet Ground Segment for Electro-L N1

Status of Current LEO Satellite Systems

Federal Service for Hydrometeorology and Environmental Monitoring of Russia

METEOR-M General Design

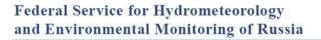
Russian meteorological satellite Meteor-M N2 was launched on July 8, 2014

In-orbit mass – 2700 kg
Payload mass – 1200 kg
Lifetime – 5 years
Orbit – Sun-synchronous
Altitude – 830 km
Data dissemination format – HRPT/LRPT

Meteor-M N 1, 2 Basic Instruments Specifications

Instrument	Application	Spectral band	Swath- width (km)	Resolution (km)
MSU-MR Low-resolution multi-channel scanning radiometer	Global and regional cloud cover mapping, ice and snow cover observation, forest fire monitoring	0,5 – 12,5μm (6 channels)	3000	1 x 1
KMSS Visible spectrum scanning imager	Earth surface monitoring for various applications (floods, soil and vegetation cover, ice cover)	0,4-0,9 μm (3+3 channels)	450/900	0,05/0,1
MTVZA-GY Imager-sounder (module for temperature and humidity sounding of the atmosphere)	Atmospheric temperature and humidity profiles, SST, sea level wind, etc.	10,6-183,3 GHz (26 channels)	2600	12 – 75
IKFS-2 * Advanced IR sounder (infrared Fourier- spectrometer)	Atmospheric temperature and humidity profiles	5-15 μm	2000	35
" Severjanin-M" X-band synthetic aperture radar	All-weather Ice coverage monitoring	9500-9700 MHz	600	0,5/1
GGAK-M Heliogeophysical measurements suite	Heliogeophysical data			
BRK SSPD Data collection system	Data retransmission from DCPs			

* - installed on-board Meteor-M N2



Advanced IR Sounder IKFS-2

Parameter	Units	Value
Spectral range: wavelength wave number	μm cm⁻¹	5-15 2000-665
Reference channel wavelength	μm	1.06
Maximum optical path difference (OPD)	mm	17
Angular size of FOV	mrad	40 x 40
Spatial resolution (at sub-satellite point)	km	35
Swath width and spatial sampling	km	2500, 110 2000, 100
Duration of the interferogram measurement	S	0.5
Dynamic range		2 ¹⁶
Mass	kg	45-50
Power	W	50
Absorption band Apr	lication	

Spectral range	Absorption band	Application
665 to 780 cm ⁻¹	CO ₂	Temperature profile
790 to 980 cm ⁻¹	Atmospheric window	Surface parameters (T_s, $\epsilon_{\nu}),$ cloud properties
1000 to 1070 cm ⁻¹	0 ₃	Ozone sounding
1080 to 1150 cm ⁻¹	Atmospheric window	T_s , ϵ_v ,; cloud properties
1210 to 1650 cm ⁻¹	H ₂ O, N ₂ O, CH ₄	Moisture profile, CH ₄ , N ₂ O, column amounts

Status of Meteor-M N2 Spacecraft

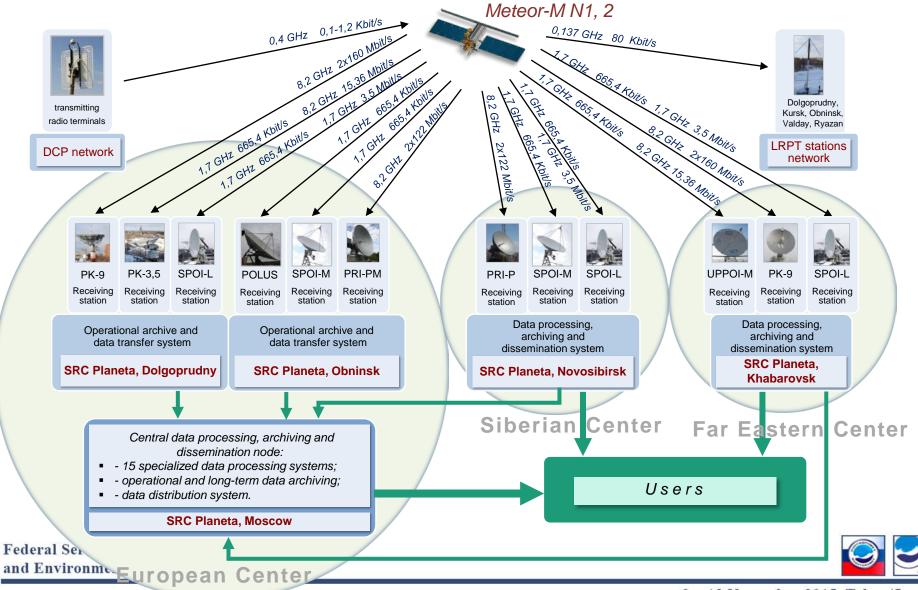
- > **MSU-MR** instrument is fully functional;
- MTVZA-GY instrument is fully functional (absolute calibration work is still ongoing);
- KMSS instrument is fully functional;
- IKFS-2 instrument is fully functional;
- Severjanin instrument is functional with limitations (due to low signal/noise ratio);
- **DCS** is functional;
- LRPT transmission is functional;
- **GGAK-M** is functional.

Meteor-M N2 Data Dissemination

1. Direct broadcast

MSU-MR and MTVZA-GY data are currently being disseminated at 1.7 GHz band in direct broadcast mode (HRPT-like). Data format description is available at SRC Planeta WEB-site http://planet.iitp.ru/english/spacecraft/meteor_m_n2_structure_eng.htm

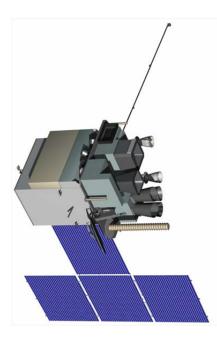
2. Global data access


Global data can be accessed on demand via FTP, e.g. for calibration/validation purposes. Operational data access is subject to further discussions.

3. L2 products access

Some L2 products are regularly generated by SRC Planeta and can be accessed via SRC Planeta WEB-site.

Roshydromet Ground Segment for Meteor-M N1, 2


Status of Future GEO Satellite Systems

Federal Service for Hydrometeorology and Environmental Monitoring of Russia

- The launch dates for: Electro-L N2 2015; Electro-L N3 2016; Electro-L N4 – 2019; Electro-L N5 – 2021.
- The Electro-L N 2,3,4,5 payload is similar to the one of the Electro-L N1, but with improved instrument performance.
- Orbital positions: for Electro-L N2 77.8°E; for Electro-L N3, 4, 5 – TBD (14.5°W /166°E).

Mission objectives

- Operational observation of the atmosphere and the Earth surface (MSU-GSM, IRFS-GS, ERBR, LM, GGAK-E/M)
- Heliogeophysical measurements
- Maintaining Data Collection System and COSPAS/SARSAT Service

Electro-M

Parameter	Value
Electro-M N 1 longitude Electro-M N 2 longitude Electro-M N 3 longitude	76º E TBD TBD (14.5ºW / 166ºE)
MSU-GS-M channels	20
MSU-GSM spatial resolution at sub-satellite point, km - VIS and NIR - IR	0,5 2
MSU-GSM scan period, min - regular mode (full Earth disk) - frequent mode (fragments of the Earth disk)	15 5
Mass, kg	1870
Expected lifetime, years	10

Electro-M Basic Payload

- MSU-GSM (Multichannel scanning unit Geostationary-M) instrument, providing full Earth disk measurements in 20 channels (VIS, NIR, IR) with 10 min period between scanning sessions and spatial resolution about 0,5 km for VIS and 2,0 km for IR channels at sub-satellite point;
- IKFS-GS (Infrared Fourier-transform Spectrometer Geostationary) instrument providing measurements in 3.7 - 6 μm and 8.3 - 15.4 μm spectral bands with 4 km spatial resolution (at sub-satellite point);

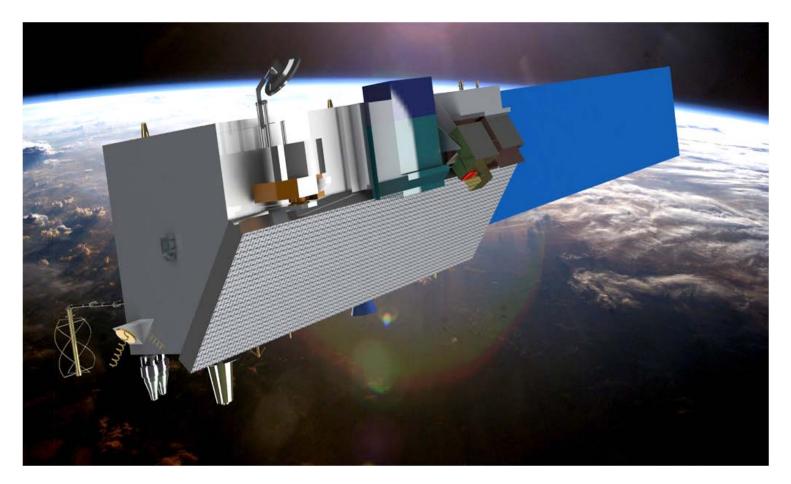
The spectral resolution is about 0,625 cm⁻¹. Repeat cycle is 1 hour;

- ERBR (Earth Radiation Budget Radiometer) instrument, providing measurements in 0.32 ...4.0 and 0.32 ...30.0 µm spectral bands with spatial resolution ≤ 50 km every 5 min;
- \geq LM (Lightning Mapper) instrument, providing continuous detection at 777,4 μ m;
- GGAK-E/M (Geliogeophysical instrument suite) modernized GGAK-E;

BRTK-M on-board radio-retransmitting suite, providing data downlink in UHF and SHF bands.

Status of Future LEO Satellite Systems

Federal Service for Hydrometeorology and Environmental Monitoring of Russia



Meteor-M N3 Basic Instrument Specifications

Instrument	Spectral band	Resolution	Swath width(km)
SAR Synthetic aperture radar	X - band	1, 5 - 500 m	10 - 750
Scatterometer	Ku - band	25×25 km	1800
OCS Ocean color scanner	13 channels 0.407 – 0.875 μm	1 km	1800
CZS Coastal zone scanner	6 channels 0.433 - 0.885 μm	80 m	800
Radiomet Radio-occultation sounder	1160 – 1600 MHz	Vertical resolution – 150 m Horizontal resolution – 300 km	

Meteor-MP

Spacecraft mass: 3300 kg, deployed size: 21,5×3,2×4,4 m

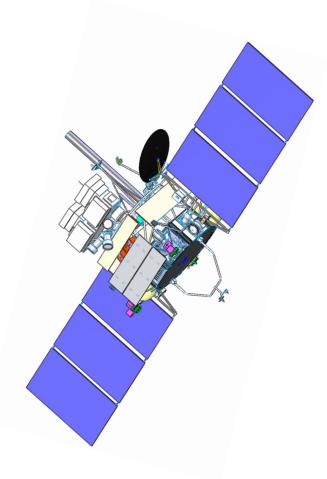
Federal Service for Hydrometeorology and Environmental Monitoring of Russia

METEOR-MP Basic Payload (Meteorological)

- Low-resolution multi-channel scanning radiometer;
- Visible spectrum scanning imager (moderate resolution multispectral imaging system);
- Infra-red Fourier-transform spectrometer;
- Moderate resolution multispectral infra-red scanner;
- Atmospheric composition spectrometer;
- Microwave imager-sounder
 - (module for temperature and humidity sounding of the atmosphere);
- Side-looking radar system;
- Radio-occultation instrument;
- Data collection system;
- Heliogeophysical instruments suite;
- 137MHz data downlink system;
- 1.7GHz data downlink system;
- X- and Ka- band data downlink system.

OCEAN Basic Payload (Oceanographic)

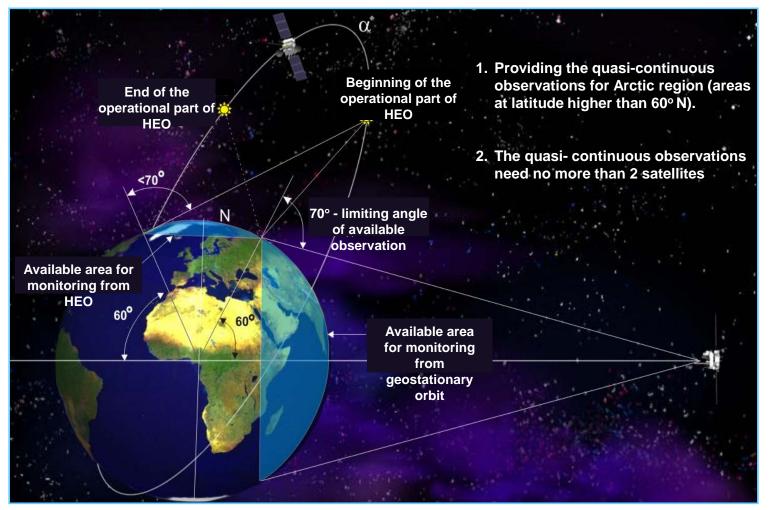
- Ocean color scanner;
- Coastal zone scanner;
- Scatterometer;
- Visible spectrum scanning imager (moderate resolution multispectral imaging system);
- Moderate resolution multispectral infra-red scanner;
- Multimode radar system based on active phased array antenna (APAA);
- Data collection system;
- \rightarrow 1.7 GHz data downlink system;
- X- and Ka- bands data downlink system.

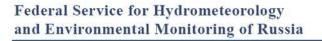


Status of Future HEO Satellite Systems

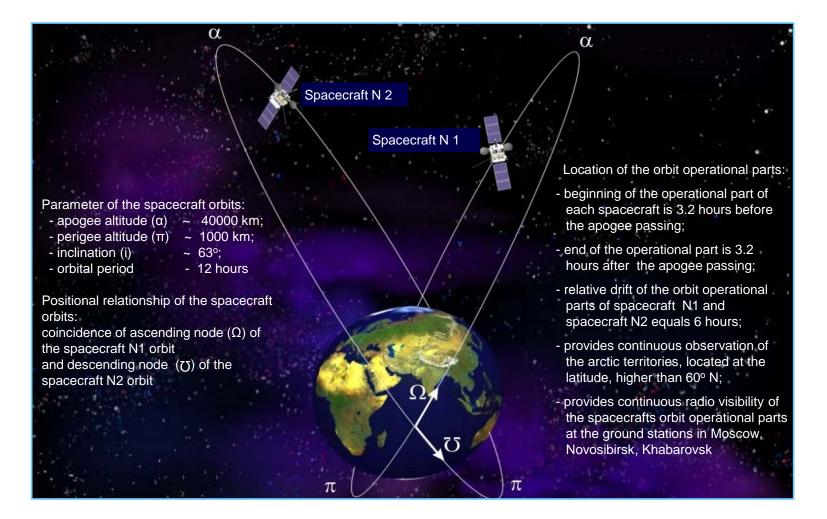
Federal Service for Hydrometeorology and Environmental Monitoring of Russia

Arctica-M




Parameter	Value
Orbit:	
Apogee, km	40000
Perigee, km	1000
Inclination, deg	63,4
Period, h	12
Full number of MSU-A spectral channel	10
Spectral range, µm	from 0,5 to 12,5
Resolution (at nadir):	
- VIS-channel, km	1
- IR-channel, km	4
Frequency of full Earth disk observation, min:	
- regular mode	30
- frequent mode	15
Spacecraft mass, kg	2000

Federal Service for Hydrometeorology and Environmental Monitoring of Russia


Advantages of the High-Elliptic Orbits (HEO) over Geostationary Orbits for Arctic Observations

Space System Ballistic Configuration

Arctica-M Basic Payload

- The multichannel scanning unit MSU-A, 10 spectral channels (3 VIS and 7 IR channels).
- The heliogeophysical instruments suite GGAK-A, providing the heliogeophysical measurements at the "Molnia" orbit.
- The on-board radio-retransmitting complex BRTK-A, providing data downlink in UHF and SHF bands.

The launch of the first satellite of Arctica series is scheduled for 2017.

ご清聴ありがとうございました Thanks you for attention!

Federal Service for Hydrometeorology and Environmental Monitoring of Russia

